

Beginning Python
From Novice to Professional

■ ■ ■

Magnus Lie Hetland

Beginning Python: From Novice to Professional

Copyright © 2005 by Magnus Lie Hetland

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-519-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Editor: Matt Moodie
Technical Reviewer: Jeremy Jones
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Beckie Stones
Copy Edit Manager: Nicole LeClerc
Copy Editor: Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Linda Marousek
Compositor: Susan Glinert Stevens
Proofreader: Liz Welch
Indexer: Michael Brinkman
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

For Ranveig

v

Contents at a Glance

About the Author . xxiii

About the Technical Reviewer . xxv

Preface . xxvii

Introduction . xxix

■CHAPTER 1 Instant Hacking: The Basics . 1

■CHAPTER 2 Lists and Tuples . 31

■CHAPTER 3 Working with Strings . 53

■CHAPTER 4 Dictionaries: When Indices Won’t Do . 67

■CHAPTER 5 Conditionals, Loops, and Some Other Statements 81

■CHAPTER 6 Abstraction . 109

■CHAPTER 7 More Abstraction . 139

■CHAPTER 8 Exceptions . 159

■CHAPTER 9 Magic Methods, Properties, and Iterators . 173

■CHAPTER 10 Batteries Included . 203

■CHAPTER 11 Files and Stuff . 255

■CHAPTER 12 Graphical User Interfaces . 269

■CHAPTER 13 Database Support . 285

■CHAPTER 14 Network Programming . 297

■CHAPTER 15 Python and the Web . 313

■CHAPTER 16 Testing, 1-2-3 . 341

■CHAPTER 17 Extending Python . 357

■CHAPTER 18 Packaging Your Programs . 373

■CHAPTER 19 Playful Programming . 381

■CHAPTER 20 Project 1: Instant Markup . 391

■CHAPTER 21 Project 2: Painting a Pretty Picture . 411

■CHAPTER 22 Project 3: XML for All Occasions . 421

■CHAPTER 23 Project 4: In the News . 439

■CHAPTER 24 Project 5: A Virtual Tea Party . 455

■CHAPTER 25 Project 6: Remote Editing with CGI . 473

■CHAPTER 26 Project 7: Your Own Bulletin Board . 483

■CHAPTER 27 Project 8: File Sharing with XML-RPC . 499

■CHAPTER 28 Project 9: File Sharing II—Now with GUI! . 517

■CHAPTER 29 Project 10: Do-It-Yourself Arcade Game . 527

■APPENDIX A The Short Version . 547

■APPENDIX B Python Reference . 557

■APPENDIX C Online Resources . 571

■INDEX . 575

vii

Contents

About the Author . xxiii

About the Technical Reviewer . xxv

Preface . xxvii

Introduction . xxix

■CHAPTER 1 Instant Hacking: The Basics . 1

Installing Python . 1
Windows . 1

Linux and UNIX . 3

Macintosh . 6

Other Distributions . 6

Keeping In Touch and Up to Date . 8

The Interactive Interpreter . 8

Algo . . . What? . 9
Numbers and Expressions . 10

Large Integers . 12

Hexadecimals and Octals. 13

Variables . 13

Statements . 14

Getting Input from the User . 15

Functions . 16

Modules . 17

cmath and Complex Numbers . 18

Back to the _ _future_ _ . 19

Saving and Executing Your Programs . 19

Running Your Python Scripts from a Command Prompt 20

Making Your Scripts Behave Like Normal Programs 21

Comments . 22

Contents

viii ■C O N T E N T S

Strings . 23

Single-Quoted Strings and Escaping Quotes 23

Concatenating Strings . 24

String Representations, str and repr. 25

input vs. raw_input. 26

Long Strings, Raw Strings, and Unicode . 26

A Quick Summary . 29

New Functions in This Chapter . 30

What Now? . 30

■CHAPTER 2 Lists and Tuples . 31

Common Sequence Operations . 32

Indexing . 33

Slicing . 34

Adding Sequences . 37

Multiplication . 37

Membership . 39

Length, Minimum, and Maximum . 40

Lists: Python’s Workhorse . 40

The list Function . 41

Basic List Operations . 41

List Methods . 43

Tuples: Immutable Sequences . 49

The tuple Function . 50

Basic Tuple Operations . 50

So What’s the Point? . 51

A Quick Summary . 51

New Functions in This Chapter . 52

What Now? . 52

■CHAPTER 3 Working with Strings . 53

Basic String Operations . 53

String Formatting: The Short Version . 53

String Formatting: The Long Version . 55

Simple Conversion . 56

Width and Precision . 57

Signs, Alignment, and Zero-Padding . 58

■C O N T E N T S ix

String Methods . 59

find . 60

join . 61

lower . 62

replace . 62

split. 63

strip . 63

translate . 64

A Quick Summary . 65

New Functions in This Chapter . 66

What Now? . 66

■CHAPTER 4 Dictionaries: When Indices Won’t Do . 67

But What Are They For? . 67

Dictionary Syntax . 68

The dict Function . 69

Basic Dictionary Operations . 69

String Formatting with Dictionaries . 71

Dictionary Methods . 72

clear . 72

copy . 73

fromkeys . 74

get . 74

has_key . 75

items and iteritems. 75

keys and iterkeys . 76

pop . 76

popitem . 76

setdefault . 76

update . 77

values and itervalues . 77

A Quick Summary . 79

New Functions in This Chapter . 79

What Now? . 79

x ■C O N T E N T S

■CHAPTER 5 Conditionals, Loops, and Some Other Statements 81

More About print and import . 81

Printing with Commas . 81

Importing Something As Something Else . 82

Assignment Magic . 83

Sequence Unpacking . 83

Chained Assignments. 84

Augmented Assignments . 84

Blocks: The Joy of Indentation . 85

Conditions and Conditional Statements . 86

So That’s What Those Boolean Values Are For 86

Conditional Execution and the if Statement . 87

else Clauses . 87

elif Clauses . 88

Nesting Blocks . 88

More Complex Conditions . 89

Assertions . 93

Loops . 93

while Loops . 94

for Loops . 95

Iterating Over Dictionaries . 96

Some Iteration Utilities . 96

Breaking Out of Loops . 98

else Clauses in Loops. 100

List Comprehension—Slightly Loopy . 101

And Three for the Road . 102

Nothing Happened! . 102

Deleting with del . 103

Executing and Evaluating Strings with exec and eval 104

A Quick Summary . 107

New Functions in This Chapter . 108

What Now? . 108

■CHAPTER 6 Abstraction . 109

Laziness Is a Virtue . 109

Abstraction and Structure . 110

Creating Your Own Functions . 111

Documenting Functions . 112

Functions That Aren’t Really Functions . 112

■C O N T E N T S xi

The Magic of Parameters . 113

Where Do the Values Come From? . 113

Can I Change a Parameter? . 114

Keyword Parameters and Defaults . 119

Collecting Parameters . 121

Scoping . 126

Rebinding Global Variables . 127

Recursion . 129

Two Classics: Factorial and Power . 130

Another Classic: Binary Search . 131

Throwing Functions Around . 133

map . 134

filter . 134

reduce . 135

apply. 137

A Quick Summary . 137

New Functions in This Chapter . 138

What Now? . 138

■CHAPTER 7 More Abstraction . 139

The Magic of Objects . 139

Polymorphism . 140

Encapsulation . 143

Inheritance. 146

Classes and Types . 147

What Is a Class, Exactly? . 147

Making Your Own Classes . 148

Attributes, Functions, and Methods . 149

Throwing Methods Around. 150

The Class Namespace . 151

Specifying a Superclass . 153

Investigating Inheritance . 153

Multiple Superclasses . 154

Interfaces and Introspection . 155

Some Thoughts on Object-Oriented Design . 156

A Quick Summary . 157

New Functions in This Chapter . 158

What Now? . 158

xii ■C O N T E N T S

■CHAPTER 8 Exceptions . 159

What Is an Exception? . 159

Making Things Go Wrong . . . Your Way . 160

The raise Statement . 160

Custom Exception Classes. 162

Catching Exceptions . 162

Look, Ma, No Arguments! . 163

More Than One except Clause . 164

Catching Two Exceptions with One Block . 164

Catching the Object . 165

A Real Catchall . 165

When All Is Well . 166

And Finally 168

Exceptions and Functions . 168

The Zen of Exceptions . 169

A Quick Summary . 171

New Functions in This Chapter . 171

What Now? . 171

■CHAPTER 9 Magic Methods, Properties, and Iterators 173

Before We Begin 173

Constructors . 174

Overriding the Constructor. 175

Calling the Unbound Superclass Constructor 177

Using the super Function . 178

Item Access . 179

The Basic Sequence and Mapping Protocol 180

Subclassing list, dict, and str . 182

More Magic . 184

Properties . 184

The property Function . 185

__getattr__, __setattr__, and Friends. 188

Iterators . 189

The Iterator Protocol . 190

Making Sequences from Iterators. 191

Generators . 191

Making a Generator . 191

A Recursive Generator . 192

Generators in General. 194

Avoiding Generators . 194

■C O N T E N T S xiii

The Eight Queens . 195

Backtracking . 196

The Problem . 196

State Representation . 196

Finding Conflicts . 197

The Base Case . 197

The Recursive Case . 198

Wrapping It Up . 200

A Quick Summary . 201

New Functions in This Chapter . 202

What Now? . 202

■CHAPTER 10 Batteries Included . 203

Modules . 203

Modules Are Programs. 203

Modules Are Used to Define Things . 205

Making Your Modules Available . 207

Packages . 210

Exploring Modules . 211

What’s in a Module? . 211

Getting Help with help . 212

Documentation . 213

Use the Source . 214

The Standard Library: A Few Favorites . 215

sys . 215

os . 216

fileinput . 219

Sets, Heaps, and Deques . 221

time . 226

random. 228

shelve . 231

re . 235

Other Interesting Standard Modules . 251

A Quick Summary . 252

New Functions in This Chapter . 253

What Now? . 253

xiv ■C O N T E N T S

■CHAPTER 11 Files and Stuff . 255

Opening Files . 255

The Mode Argument . 256

Buffering . 257

The Basic File Methods . 257

Reading and Writing . 258

Reading and Writing Lines . 260

Closing Your Files . 261

Iterating Over File Contents . 263

Doing It Byte by Byte . 264

One Line at a Time . 264

Reading Everything . 265

Lazy Line Iteration with fileinput and xreadlines 265

The New Kids on the Block: File Iterators . 266

A Quick Summary . 267

New Functions in This Chapter . 268

What Now? . 268

■CHAPTER 12 Graphical User Interfaces . 269

An Example GUI Application . 269

A Plethora of Platforms . 270

Downloading and Installing wxPython . 271

Getting Started . 272

Creating Windows and Components . 273

Labels and Positions . 274

More Intelligent Layout. 276

Event Handling . 278

The Finished Program . 278

But I’d Rather Use 280

Using Tkinter . 281

Using Jython and Swing . 282

Using Something Else. 283

A Quick Summary . 283

What Now? . 283

■C O N T E N T S xv

■CHAPTER 13 Database Support . 285

The Python DB API . 285

Global Variables . 286

Exceptions . 287

Connections and Cursors . 287

Types . 289

Downloading and Installing pysqlite . 290

Getting Started . 291

An Example Database Application . 291

Creating and Populating Tables . 292

Searching and Dealing with Results . 294

A Quick Summary . 295

New Functions in This Chapter . 295

What Now? . 295

■CHAPTER 14 Network Programming . 297

A Handful of Networking Modules . 297

socket. 298

urllib and urllib2 . 300

Other Modules . 301

SocketServer and Friends . 302

More Information . 303

Multiple Connections . 303

Forking and Threading with SocketServers 305

Asynchronous I/O with select and poll . 305

Twisted . 308

Downloading and Installing Twisted . 308

Writing a Twisted Server . 309

A Quick Summary . 311

New Functions in This Chapter . 312

What Now? . 312

■CHAPTER 15 Python and the Web . 313

Screen Scraping . 313

Tidy and XHTML Parsing . 314

Beautiful Soup . 319

xvi ■C O N T E N T S

Dynamic Web Pages with CGI . 321

Step 1. Preparing the Web Server . 321

Step 2. Adding the Pound Bang Line . 321

Step 3. Setting the File Permissions. 322

CGI Security Risks. 323

A Simple CGI Script . 323

Debugging with cgitb . 324

Using the cgi Module . 325

A Simple Form. 327

One Step Up: mod_python . 328

Installing . 329

CGI Handler . 330

PSP . 331

The Publisher . 332

Web Services: Scraping Done Right . 335

RSS . 335

XML-RPC . 337

A Quick Summary . 339

New Functions in This Chapter . 339

What Now? . 339

■CHAPTER 16 Testing, 1-2-3 . 341

Test First, Code Later . 341

Precise Requirement Specification . 342

Planning for Change . 343

The 1-2-3 (and 4) of Testing . 344

Tools for Testing . 344

doctest . 344

unittest . 347

Beyond Unit Tests . 350

PyChecker and PyLint . 351

Profiling . 353

A Quick Summary . 354

New Functions in This Chapter . 355

What Now? . 355

■C O N T E N T S xvii

■CHAPTER 17 Extending Python . 357

The Really Easy Way: Jython and IronPython . 358

Writing C Extensions . 360

A Swig of . . . SWIG. 361

Hacking It on Your Own . 365

A Quick Summary . 370

New Functions in This Chapter . 371

What Now? . 371

■CHAPTER 18 Packaging Your Programs . 373

Distutils Basics . 373

Basic Installation . 374

Wrapping Things Up . 376

Compiling Extensions . 378

Creating Executable Programs with py2exe . 379

A Quick Summary . 380

New Functions in This Chapter . 380

What Now? . 380

■CHAPTER 19 Playful Programming . 381

Why Playful? . 381

The Ju-Jitsu of Programming . 381

Prototyping . 382

Configuration . 383

Extracting Constants. 383

Configuration Files . 384

Logging . 385

If You Can’t Be Bothered . 387

Project Structure . 388

A Quick Summary . 388

What Now? . 389

xviii ■C O N T E N T S

■CHAPTER 20 Project 1: Instant Markup . 391

What’s the Problem? . 391

Specific Goals . 392

Useful Tools . 392

Preparations . 392

First Implementation . 394

Adding Some Markup . 395

Second Implementation . 396

Handlers. 397

A Handler Superclass . 398

Rules . 399

A Rule Superclass . 400

Filters . 401

The Parser . 401

Constructing the Rules and Filters . 402

Putting It All Together . 403

Further Exploration . 408

What Now? . 409

■CHAPTER 21 Project 2: Painting a Pretty Picture . 411

What’s the Problem? . 411

Specific Goals . 412

Useful Tools . 412

How Does It Work? . 412

Preparations . 412

First Implementation . 413

Drawing with ReportLab . 413

Constructing Some PolyLines . 415

The Prototype . 416

Second Implementation . 417

Getting the Data . 417

Using the LinePlot Class. 418

Further Exploration . 420

What Now? . 420

■C O N T E N T S xix

■CHAPTER 22 Project 3: XML for All Occasions . 421

What’s the Problem? . 421

Specific Goals . 422

Useful Tools . 422

Preparations . 423

First Implementation . 424

Creating a Simple Content Handler. 425

Creating HTML Pages . 428

Second Implementation . 430

A Dispatcher Mix-In Class . 430

Factoring Out the Header, Footer, and Default Handling 432

Support for Directories . 432

The Event Handlers. 433

Further Exploration . 437

What Now? . 437

■CHAPTER 23 Project 4: In the News . 439

What’s the Problem? . 439

Specific Goals . 440

Useful Tools . 440

Preparations . 440

First Implementation . 441

Second Implementation . 444

Further Exploration . 452

What Now? . 453

■CHAPTER 24 Project 5: A Virtual Tea Party . 455

What’s the Problem? . 455

Specific Goals . 455

Useful Tools . 456

What’s It For? . 456

Preparations . 456

First Implementation . 457

The ChatServer Class . 457

The ChatSession Class . 459

Putting It Together . 461

xx ■C O N T E N T S

Second Implementation . 463

Basic Command Interpretation . 463

Rooms . 464

Login and Logout Rooms . 465

The Main Chat Room . 466

The New Server . 466

Further Exploration . 472

What Now? . 472

■CHAPTER 25 Project 6: Remote Editing with CGI . 473

What’s the Problem? . 473

Specific Goals . 473

Useful Tools . 474

Preparations . 474

First Implementation . 474

Second Implementation . 476

index.html . 476

edit.cgi . 476

save.cgi . 478

Running the Editor . 479

Further Exploration . 481

What Now? . 481

■CHAPTER 26 Project 7: Your Own Bulletin Board . 483

What’s the Problem? . 483

Specific Goals . 483

Useful Tools . 484

Preparations . 484

First Implementation . 486

Second Implementation . 489

main.cgi . 490

view.cgi . 492

edit.cgi . 493

save.cgi . 494

Trying It Out . 496

Further Exploration . 498

What Now? . 498

■C O N T E N T S xxi

■CHAPTER 27 Project 8: File Sharing with XML-RPC 499

What’s the Problem? . 499

Specific Goals . 500

Useful Tools . 501

Preparations . 501

First Implementation . 501

Second Implementation . 509

The Client Interface . 509

The Exceptions . 510

Validating File Names . 510

Trying Out the Second Implementation . 511

Further Exploration . 516

What Now? . 516

■CHAPTER 28 Project 9: File Sharing II—Now with GUI! 517

What’s the Problem? . 517

Specific Goals . 517

Useful Tools . 517

Preparations . 518

First Implementation . 518

Second Implementation . 521

Further Exploration . 525

What Now? . 525

■CHAPTER 29 Project 10: Do-It-Yourself Arcade Game 527

What’s the Problem? . 527

Specific Goals . 528

Useful Tools . 528

pygame . 528

pygame.locals . 529

pygame.display . 529

pygame.font . 529

pygame.sprite . 530

pygame.mouse . 530

pygame.event . 530

pygame.image . 530

xxii ■C O N T E N T S

Preparations . 530

First Implementation . 531

Second Implementation . 535

Further Exploration . 545

What Now? . 546

■APPENDIX A The Short Version . 547

The Basics . 547

Functions . 549

Objects and Stuff 550

Some Loose Ends . 554

■APPENDIX B Python Reference . 557

Expressions . 557

Statements . 566

Simple Statements . 566

Compound Statements. 569

■APPENDIX C Online Resources . 571

Python Distributions . 571

Python Documentation . 572

Useful Toolkits and Modules . 572

Newsgroups and Mailing Lists . 573

■INDEX . 575

xxiii

About the Author

■MAGNUS LIE HETLAND is an associate professor of algorithms at the
Norwegian University of Science and Technology, NTNU. Even though
he loves learning new programming languages—even quite obscure
ones—Magnus has been a devoted Python fan and an active member
of the Python community for many years, and is the author of the
popular online tutorials “Instant Python” and “Instant Hacking.” His
publications include the forerunner to this book, Practical Python
(Apress, 2002), as well as several scientific papers. When he isn’t busy

staring at a computer screen, he may be found reading (even while bicycling), acting (in a local
theater group), or gaming (mostly roleplaying games).

xxv

About the
Technical Reviewer

■JEREMY JONES is currently a software quality assurance engineer at
The Weather Channel in Atlanta, GA, where he spends the majority of
his time writing Python applications that test other applications. He
began using Python about five years ago after a lengthy and painful
battle with another (unnamed) programming language. He lives in the
suburbs of Atlanta with his wife, Debra, and two children, Zane and
Justus. Between changing diapers, giving baths, and pulling the children
around the neighborhood in a wagon, he finds time to write articles for

DevX and O’Reilly’s ONLamp, and to maintain his open source software projects, Munkware
(http://munkware.sourceforge.net) and ediplex (http://forge.novell.com/modules/xfmod/
project/?ediplex).

xxvii

Preface

A few years ago, Jason Gilmore approached me about writing a book for Apress. He had read
my online Python tutorials and wanted me to write a book in a similar style. I was flattered,
excited, and just a little bit nervous. The one thing that worried me the most was how much
time it would take, and how much it would interfere with my studies (I was a PhD student at the
time). It turned out to be quite an undertaking, and it took me a lot longer to finish than I had
expected. Luckily, it didn’t interfere too much with my school work, and I managed to get my
degree without any delays.

Last year, Jason contacted me again. Apress wanted an expanded and revised version of my
book. Was I interested? At the time I was busy settling into a new position as associate professor,
while spending all my spare time portraying Peer Gynt, so again time became the major issue.
Eventually (after things had settled down a bit, and I had a bit more time to spare), I agreed to
do the book, and this (as I’m sure you’ve gathered) is the result. Most of the material is taken
from the first version of the book, Practical Python (Apress, 2002). The existing material has
been completely revised, based on recent changes in the Python language, and several new
chapters have been added. Some of the old material has also been redistributed to accommodate
the new structure. I’ve received a lot of positive feedback from readers about the first version—
I hope I’ve been able to keep what people liked and to add more of the same.

Without the persistent help and encouragement from several people, this book would never
have been written. My heartfelt thanks go out to all of them. In particular, I would like to thank
the team that has worked directly with me in the process of writing the book: Jason Gilmore, for
getting the project off the ground and steering it in the right direction; Beckie Stones, for keeping
everything together; Jeremy Jones and Matt Moodie, for their technical comments and insights;
and Linda Marousek, for being so patient with me. I’m also grateful to the rest of the team, for
making the process as smooth as it has been. But this book wouldn’t have been what it is without
several people who worked with me on the previous version: I’d like to thank Jason Gilmore and
Alex Martelli, for their excellent technical editing (Jason on the entire book, and Alex on the first
half) and for going above and beyond the call of duty in dispensing advice and suggestions;
Erin Mulligan and Tory McLearn, for holding my hand through the process and for nudging me
along when that was needed; Nancy Rapoport, for her help polishing my prose; and Grace Wong,
for providing answers when no one else could. Pete Shinners gave me several helpful suggestions
on the game in Project 10, for which I am very grateful. My morale has also been heavily boosted
by several encouraging emails from satisfied readers: Thanks! Finally, I would like to thank my
family and friends, and my girlfriend Ranveig, for putting up with me while I was writing this book.

xxix

Introduction

A C program is like a fast dance on a newly waxed dance floor by people carrying razors.

—Waldi Ravens

C++: Hard to learn and built to stay that way.

—Anonymous

Java is, in many ways, C++––.

—Michael Feldman

And now for something completely different . . .

—Monty Python’s Flying Circus

I’ve started this introduction with a few quotes to set the tone for the book—which is rather
informal. In the hope of making it an easy read, I’ve tried to approach the topic of Python
programming with a healthy dose of humor, and true to the traditions of the Python community,
much of this humor is related to Monty Python sketches. As a consequence, some of my examples
may seem a bit silly; I hope you will bear with me. (And, yes, the name Python is derived from
Monty Python, not from snakes belonging to the family Pythonidae.)

In this introduction, I give you a quick look at what Python is, why you should use it, who
uses it, who this book’s intended audience is, and how the book is organized.

So, what is Python, and why should you use it? To quote an official blurb (available from
http://www.python.org/doc/essays/blurb.html), it is “an interpreted, object-oriented, high-
level programming language with dynamic semantics.” Many of these terms will become clear
as you read this book, but the gist of it is that Python is a programming language that knows
how to stay out of your way when you write your programs. It enables you to implement the
functionality you want without any hassle, and lets you write programs that are clear and read-
able (much more so than programs in most other currently popular programming languages).

Even though Python might not be as fast as compiled languages such as C or C++, what you
save in programming time will probably make Python worth using; in most programs the speed
difference won’t be noticeable anyway. If you are a C programmer, you can easily implement
the critical parts of your program in C at a later date, and have them interoperate with the
Python parts. If you haven’t done any programming before (and perhaps are a bit confused by
my references to C and C++), Python’s combination of simplicity and power make it an ideal
choice as a place to start.

xxx ■I N T R O D U C T I O N

So, who uses Python? Since Guido van Rossum created the language in the early 1990s, its
following has grown steadily, and interest has increased markedly in the last few years. Python
is used extensively for system administration tasks (it is, for example, a vital component of several
Linux distributions), but it is also used to teach programming to complete beginners. NASA uses
Python for several of its software systems, and has adopted it as the standard scripting language
for its Integrated Planning System; Industrial Light & Magic uses Python in its production of
special effects for large-budget feature films; Yahoo! uses it (among other things) to manage its
discussion groups; and Google has used it to implement many components of its Web crawler
and search engine. Python is being used in such diverse areas as computer games and bioinfor-
matics. Soon one might as well ask, who isn’t using it?

This book is for those of you who want to learn how to program in Python. It is intended to
suit a wide audience, from neophyte programmer to advanced computer wiz. If you have never
programmed before, you should start by reading Chapter 1 and continue until you find that
things get too advanced for you (if, indeed, they do). Then you should start practicing, and write
some programs of your own. When the time is right, you can return to the book and proceed
with the more intricate stuff.

If you already know how to program, then some of the introductory material might not be
new to you (although there will probably be some surprising details here and there). You could
skim through the early chapters to get an idea of how Python works, or perhaps read through
Appendix A, “The Short Version,” which is based on my online Python tutorial “Instant Python.”
It will get you up to speed on the most important Python concepts. After getting the big picture,
you could jump straight to Chapter 10 (which describes the Python standard libraries).

The second half of the book consists of ten programming projects, which show off various
capabilities of the Python language. These projects should be of interest to beginner and expert
alike. Although some of the material in the later projects may be a bit difficult for an inexperi-
enced programmer, following the projects in order (after reading the material in the first part of
the book) should be possible.

The projects touch upon a wide range of topics, most of which will be very useful to you
when writing programs of your own. You will learn how to do things that may seem completely
out of reach to you at this point, such as creating a chat server, a peer-to-peer file sharing system, or
a full-fledged graphical computer game. Although much of the material may seem hard at first
glance, I think you will be surprised by how easy most of it really is. If you’d like to download
the source code, it’s available from http://www.apress.com.

Well, that’s it. I always find long introductions boring myself, so I’ll let you continue with
your Pythoneering, either in Chapter 1 or in Appendix A. Good luck, and happy hacking.

1

■ ■ ■

C H A P T E R 1

Instant Hacking: The Basics

It’s time to start hacking.1 In this chapter, you learn how to take control of your computer by
speaking a language it understands: Python. Nothing here is particularly difficult, so if you
know the basics of how your computer works, you should be able to follow the examples and
try them out yourself. I’ll go through the basics, starting with the excruciatingly simple, but
because Python is such a powerful language, you’ll soon be able to do pretty advanced things.

First, I show you how to get the software you need. Then I tell you a bit about algorithms
and their main components, expressions, and statements. Throughout these sections, there
are numerous small examples (most of them using only simple arithmetic) that you can try out
in the Python interactive interpreter (see the section “The Interactive Interpreter,” later in this
chapter). You learn about variables, functions, and modules, and after handling these topics,
I show you how to write and run larger programs. Finally, I deal with strings, an important
aspect of almost any Python program.

Installing Python
Before you can start programming, you need some new software. What follows is a short
description of how to download and install Python. If you want to jump into the installation
process without detailed guidance, you could simply visit http://www.python.org/download to
get the most recent version of Python.

Windows
To install Python on a Windows machine, follow these steps:

1. Open a Web browser and go to http://www.python.org.

2. Click the “Download” link.

1. “Hacking” is not the same as “cracking,” which is a term describing computer crime. The two are often
confused. “Hacking” basically means having fun while programming. For more information, see Eric
Raymond’s article “How to Become a Hacker” at http://www.catb.org/~esr/faqs/hacker-howto.html.

2 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

3. You should see several links here, with names such as “Python 2.4” and “Python 2.4
Windows installer”. Click the “Windows installer” link—it should give you the installer
file directly. Go to step 5. If you can’t find such a link, click the link with the highest
version among those with names like “Python 2.4.” Chances are that this link will be
found early on the page. For Python 2.4, you could simply go to the URL http://www.
python.org/2.4.

4. Follow the instructions for Windows users. This will entail downloading a file called
python-2.4.msi (or something similar), where 2.4 should be the version number of the
newest release.

5. Store the Windows Installer file somewhere on your computer, for example,
C:\download\python-2.4.msi. (Just create a directory where you can find it later.)

6. Run the downloaded file by double-clicking it in Windows Explorer. This brings up the
Python install wizard, which is really easy to use. Just accept the default settings, wait
until the install is finished, and you’re ready to roll!

■Note Python for Microsoft Windows is distributed as a Windows Installer file, and requires that your
Windows version supports Windows Installer 2.0 (or later). If you don’t have Windows Installer, it can be
downloaded freely for Windows 95, 98, ME, NT 4.0, and 2000. Windows XP already has Windows Installer,
and many older machines will, too. There are download instructions for the Installer on the Python download
page. Alternatively, you could go to the Microsoft download site, http://www.microsoft.com/downloads,
and search for “Windows Installer” (or simply select it from the download menu). Choose the most recent
version for your platform and follow the download and installation instructions. If you’re uncertain about
whether you have Windows Installer or not, simply try executing step 6 of the previous installation instructions,
double-clicking the MSI file. If you get the install wizard, everything is okay. See http://www.python.
org/2.4/msi.html for advanced features of the Windows Installer related to Python installation.

Assuming that the installation went well, you now have a new program in your Windows
Start menu. Run the Python Integrated Development Environment (IDLE) by selecting Start ➤
Programs ➤ Python2 ➤ IDLE (Python GUI).

You should now see a window that looks like the one shown in Figure 1-1. If you feel a bit
lost, simply select Help ➤ IDLE Help from the menu, and you get a simple description of the
various menu items and basic usage. For more documentation on IDLE, check out http://
www.python.org/idle. (Here you will also find more information on running IDLE on platforms
other than Windows.) If you press F1, or select Help ➤ Python Docs from the menu, you will get
the full Python documentation. (The document there of most use to you will probably be the
“Library Reference.”) All the documentation is searchable.

2. This menu option will probably include your version number: for example, Python 2.4.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 3

Figure 1-1. The IDLE interactive Python shell

Once you’ve got the IDLE interactive Python shell running, you can continue with the
section “The Interactive Interpreter,” later in this chapter.

Linux and UNIX
In many, if not most, Linux and UNIX installations, a Python interpreter will already be
present. You can check whether this is the case by running the python command at the prompt,
as follows:

$ python

Running this command should start the interactive Python interpreter, with output similar to
the following:

Python 2.4 (#1, Dec 7 2004, 09:18:58)
[GCC 3.4.1] on sunos5
Type "help", "copyright", "credits" or "license" for more information.
>>>

■Note To exit the interactive interpreter, use Ctrl-D (press the Ctrl key and while keeping that depressed,
press D).

4 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

If there is no Python interpreter installed, you will probably get an error message similar to
the following:

bash: python: command not found

In that case, you have to install Python yourself, as described in the following sections.

Linux with RPM

If you are running a Linux distribution with the RPM package manager installed, follow these
steps to install the Python RPM packages:

1. Go to the download page (refer to steps 1 and 2 in the instructions for installing Python
on a Windows system).

2. Follow the link with the most recent version number, such as “Python 2.4.” (Don’t
choose a link with the word “sources” in it.) Chances are that this link will be found early
on the page. For Python 2.4, you could simply go to the URL http://www.python.org/
2.4. Follow the instructions for Fedora users: follow the link “RPMs.”

3. Download all the binary RPMs. Store them in a temporary location (such as ~/rpms/
python).

4. Make sure you are logged in as system administrator (root) and are currently in the
directory where you stored the RPMs. Make sure there are no other RPMs in this
directory.

5. Install the packages by executing the command rpm --install *.rpm. If you already
have an older version of Python installed and wish to upgrade, you should instead use
rpm --upgrade *.rpm.

■Caution The preceding command installs all the RPM files in the current directory. Make sure that you
are in the correct directory and that it only contains the packages you want to install. If you want to be more
careful, you can specify the name of each package separately. For more information about RPMs, check out
the man page.

You should now be able to run Python. On occasion, you may run into some unresolved
dependencies—you may lack other RPM packages needed to install Python. To locate these
packages, visit a search facility such as http://www.rpmfind.net.

Sometimes a binary RPM package designed for one Linux distribution (for example, Red
Hat Linux) may not work smoothly with another (for example, Mandrake Linux). If you find
that the binary package is giving you grief, try downloading a source RPM instead (with a name
like packagename.src.rpm). You can then build a set of binary packages tailored for your system
with the command

rpm --rebuild packagename.src.rpm

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 5

where packagename.src.rpm is the real file name of the package you’re rebuilding. After you
have done this, you should have a brand-new set of RPM files that you can install as described
previously.

■Note To use the RPM installation, you must be logged in as root (the administrator account). If you don’t
have root access, you should compile Python yourself, as described in the section “Compiling from Sources,”
later in this chapter.

Other Installation Mechanisms for Linux

There are several other package systems and installation mechanisms for Linux than rpm. If
you’re running a Linux system with some form of package manager, chances are you can get
Python through it.

■Note You will probably have to have administrator privileges (a root account) in order to install Python
using a package manager in Linux.

For example, if you’re running Debian Linux, you should be able to install Python with the
following command:

$ apt-get install python2.4

If you’re running Gentoo Linux, you should be able to use Portage, like this:

$ emerge python

In both cases, $ is, of course, the bash prompt. Replace 2.4 with the most recent version
number.

Compiling from Sources

If you don’t have a package manager, or would rather not use it, you can compile Python your-
self. This may be the method of choice if you are on a UNIX box but you don’t have root access
(installation privileges). This method is very flexible, and enables you to install Python wherever
you want, including in your own home directory. To compile and install Python, follow these steps:

1. Go to the download page (refer to steps 1 and 2 in the instructions for installing Python
on a Windows system).

2. Follow the instructions for downloading the sources.

3. Download the file with the extension .tgz. Store it in a temporary location. Assuming
that you want to install Python in your home directory, you may want to put it in a
directory such as ~/python. Enter this directory (e.g., using cd ~/python).

6 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

4. Unpack the archive with the command tar -xzvf Python-2.4.tgz (where 2.4 is the
version number of the downloaded source code). If your version of tar doesn’t support
the z option, you may want to uncompress the archive with gunzip first, and then use
tar -xvf afterward. If there is something wrong with the archive, try downloading it
again. Sometimes errors occur during download.

5. Enter the unpacked directory:

$ cd Python-2.4

Now you should be able to execute the following commands:

./configure --prefix=$(pwd)
make
make install

You should end up with an executable file called python in the current directory. (If this
doesn’t work, please consult the README file included in the distribution.) Put the current
directory in your PATH environment variable, and you’re ready to rock.

To find out about the other configuration directives, execute

./configure --help

Macintosh
If you’re using a Macintosh, follow these steps:

1. Go to the standard download page (steps 1 and 2 from the Windows instructions earlier
in this chapter).

2. Follow the link for the Macintosh OS X installer. There should also be a link to the
MacPython download page, which has more information. The MacPython page also
has versions of Python for older versions of the Macintosh OS.

■Note As of Python version 2.4, the OS X installer is still at version 2.3.

Other Distributions
You now have the standard Python distribution installed. Unless you have a particular interest
in alternative solutions, that should be quite all right. If you are curious (and, perhaps, feeling
a bit courageous), read on . . .

There are other Python distributions, with the most well-known one being ActivePython.
A slightly less well-known but quite interesting distribution is Stackless Python. These distribu-
tions are based on the standard implementation of Python, written in the C programming

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 7

language. Two distributions that take a different approach are Jython and IronPython. If you’re
interested in other development environments than IDLE, Table 1-1 lists some options.

ActivePython is a Python distribution from ActiveState (http://www.activestate.com). At
its core, it’s the same as the standard Python distribution for Windows. The main difference is
that it includes lots of extra goodies (modules) that are available separately. Definitely worth a
look if you are running Windows.

Stackless Python is a reimplementation of Python, based on the original code, but with
some important internal changes. To a beginning user, these differences won’t show up much,
and one of the more standard distributions would probably be more useful. The main advantages
of Stackless Python are that it allows deeper levels of recursion and more efficient multithreading.
As mentioned, both of these are rather advanced features, not needed by the average user. You
can get Stackless Python from http://www.stackless.com.

Table 1-1. Some Integrated Development Environments (IDEs) for Python

Environment Description Available From . . .

IDLE The standard Python
environment

http://www.python.org/idle

Pythonwin Windows-oriented
environment

http://www.python.org/windows

ActivePython Feature-packed; contains
Pythonwin IDE

http://www.activestate.com

Komodo Commercial IDE http://www.activestate.com

Wingware Commercial IDE http://www.wingware.com

BlackAdder Commercial IDE and (Qt)
GUI builder

http://www.thekompany.com

Boa Constructor Free IDE and GUI builder http://boa-constructor.sf.net

Anjuta Versatile IDE for Linux/UNIX http://anjuta.sf.net

ArachnoPython Commercial IDE http://www.python-ide.com

Code Crusader Commercial IDE http://www.newplanetsoftware.com

Code Forge Commercial IDE http://www.codeforge.com

Eclipse Popular, flexible, open
source IDE

http://www.eclipse.org

eric Free IDE using Qt http://eric-ide.sf.net

KDevelop Cross-language IDE for KDE http://www.kdevelop.org

VisualWx Free GUI builder http://visualwx.altervista.org

wxDesigner Commercial GUI builder http://www.roebling.de

wxGlade Free GUI builder http://wxglade.sf.net

8 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

Jython (http://www.jython.org) and IronPython (http://www.ironpython.com) are
different—they’re versions of Python implemented in other languages. Jython is implemented
in Java, targeting the Java Virtual Machine, and IronPython is implemented in C#, targeting the
.NET and MONO implementations of the common language runtime (CLR). At the time of
writing, Jython is quite stable, but lagging behind Python—the current Jython version is 2.1,
while Python is at 2.4. There are significant differences in these two versions of the language.
IronPython is quite new, and at a rather experimental stage. Still, it is usable, and reported to
be faster than standard Python on some benchmarks.

Keeping In Touch and Up to Date
The Python language evolves continuously. To find out more about recent releases and rele-
vant tools, the python.org Web site is an invaluable asset. To find out what’s new in a given
release, go to the page for the given release, such as http://python.org/2.4 for release 2.4.
There you will also find a link to Andrew Kuchling’s in-depth description of what’s new for the
release, with a URL such as http://python.org/doc/2.4/whatsnew for release 2.4. If there have
been new releases since this book went to press, you can use these Web pages to check out any
new features.

If you want to keep up with newly released third-party modules or software for Python,
you could check out the Python email list python-announce-list; for general discussions about
Python you could try python-list, but be warned: this list gets a lot of traffic. Both of these lists
are available at http://mail.python.org. If you’re a Usenet user, these two lists are also available
as the newsgroups comp.lang.python.announce and comp.lang.python, respectively. If you’re
totally lost, you could try the python-help list (available from the same place as the two other
lists) or simply email help@python.org. Before you do, you really ought to see if your question
is a frequently asked one, by consulting the Python FAQ, at http://python.org/doc/faq, or by
performing a quick Web search.

The Interactive Interpreter
When you start up Python, you get a prompt similar to the following:

Python 2.4 (#1, Dec 7 2004, 09:18:58)
[GCC 3.4.1] on sunos5
Type "help", "copyright", "credits" or "license" for more information.
>>>

■Note The exact appearance of the interpreter and its error messages will depend on which version you
are using.

This might not seem very interesting, but believe me—it is. This is your gateway to
hackerdom—your first step in taking control over your computer. In more pragmatic terms,
it’s an interactive Python interpreter. Just to see if it’s working, try the following:

>>> print "Hello, world!"

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 9

When you press the Enter key, the following output appears:

Hello, world!
>>>

■Note If you are familiar with other computer languages, you may be used to terminating every line with a
semicolon. There is no need to do so in Python. A line is a line, more or less. You may add a semicolon if you
like, but it won’t have any effect (unless more code follows on to the same line), and it is not a common thing
to do.

What happened here? The >>> thingy is the prompt. You can write something in this space,
like print "Hello, world!". If you press Enter, the Python interpreter prints out the string
“Hello, world!” and you get a new prompt below that.

■Note The term “printing” in this context refers to writing text to the screen, not producing hardcopies with
a printer.

What if you write something completely different? Try it out. For example:

>>> The Spanish Inquisition
SyntaxError: invalid syntax
>>>

Obviously, the interpreter didn’t understand that.3 (If you are running an interpreter other
than IDLE, such as the command-line version for Linux, the error message will be slightly
different.) The interpreter also indicates what’s wrong: it will emphasize the word “Spanish” by
giving it a red background (or, in the command-line version, by using a caret, ^).

If you feel like it, play around with the interpreter some more. (For some guidance, try
entering the command help at the prompt and pressing Enter. As mentioned, you can press F1
for help about IDLE.) Otherwise, let’s press on. After all, the interpreter isn’t much fun when
you don’t know what to tell it, is it?

Algo . . . What?
Before you start programming in earnest, I’ll try to give you an idea of what computer program-
ming is. So, what is it? It’s telling a computer what to do. Computers can do lots of things, but
they aren’t very good at thinking for themselves. They really need to be spoonfed the details.
You have to feed the computer an algorithm, in some language it understands. “Algorithm” is

3. After all, no one expects the Spanish Inquisition . . .

10 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

just a fancy word for a procedure or recipe—a detailed description of how to do something.
Consider the following:

SPAM with SPAM, SPAM, Eggs, and SPAM:
First, take some SPAM.
Then add some SPAM, SPAM, and eggs.
If a particularly spicy SPAM is desired, add some SPAM.
Cook until done - Check every 10 minutes.

This recipe may not be very interesting, but how it’s constructed is. It consists of a series of
instructions to be followed in order. Some of the instructions may be done directly (“take some
SPAM”), while some require some deliberation (“If a particularly spicy SPAM is desired”), and
others must be repeated several times (“Check every 10 minutes.”)

Recipes and algorithms consist of ingredients (objects, things), and instructions (statements).
In this example, SPAM and eggs were the ingredients, while the instructions consisted of
adding SPAM, cooking for a given length of time, and so on. Let’s start with some reasonably
simple Python ingredients and see what you can do with them.

Numbers and Expressions
The interactive Python interpreter can be used as a powerful calculator. Try the following:

>>> 2 + 2

This ought to give you the answer 4. That wasn’t too hard. Well, what about this:

>>> 53672 + 235253
288925

Still not impressed? Admittedly, this is pretty standard stuff. (I’ll assume that you’ve used
a calculator enough to know the difference between 1+2*3 and (1+2)*3.) All the usual arith-
metic operators work as expected—almost. There is one potential trap here, and that is integer
division (in Python versions prior to 3.0, which may not come out for quite a while):

>>> 1/2
0

What happened here? One integer (a nonfractional number) was divided by another, and
the result was rounded down to give an integer result. This behavior can be useful at times, but
often (if not most of the time), you need ordinary division. What do you do to get that? There
are two possible solutions: You use real numbers (numbers with decimal points) rather than
integers, or you can tell Python to change how division works.

Real numbers are called floats (or floating-point numbers) in Python—if either one of the
numbers in a division is a float, the result will be, too:

>>> 1.0 / 2.0
0.5

>>> 1/2.0
0.5

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 11

>>> 1.0/2
0.5

>>> 1/2.
0.5

If you’d rather have Python do proper division, you could add the following statement to
the beginning of your program (writing full programs is described later) or simply execute it in
the interactive interpreter:

>>> from __future__ import division

Another alternative, if you’re running Python from the command line (e.g., on a Linux
machine), is to supply the command-line switch -Qnew. In either case, division will suddenly
make a bit more sense:

>>> 1 / 2
0.5

Of course, the single slash can no longer be used for the kind of integer division shown
earlier; but there is a separate operator that will do this for you—the double slash:

>>> 1 // 2
0

The double slash consistently performs integer division, even with floats:

>>> 1.0 // 2.0
0.0

There is a more thorough explanation of the __future__ stuff in the section “Back to the
__future__,” later in this chapter.

Now you’ve seen the basic arithmetic operators (addition, subtraction, multiplication,
and division), but one more operator is quite useful at times:

>>> 1 % 2
1

This is the remainder (modulus) operator—x % y gives the remainder of x divided by y.
For example:

>>> 10 / 3
3
>>> 10 % 3
1
>>> 9 / 3
3
>>> 9 % 3
0
>>> 2.75 % 0.5
0.25

12 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

Here 10/3 is 3 because the result is rounded down. But 3×3 is 9, so you get a remainder of
one. When you divide 9 by 3, the result is exactly 3, with no rounding. Therefore, the remainder
is zero. This may be useful if you want to check something “every 10 minutes” as in the recipe
earlier in the chapter. You can simply check whether minute % 10 is zero. (For a description on
how to do this, see the sidebar “Sneak Peek: The if Statement,” later in the chapter.) As you can
see from the final example, the remainder operator works just fine with floats as well.

The last operator is the exponentiation (or power) operator:

>>> 2 ** 3
8
>>> -3 ** 2
-9
>>> (-3) ** 2
9

Note that the exponentiation operator binds tighter than the negation (unary minus), so
-3**2 is in fact the same as -(3**2). If you want to calculate (-3)**2, you must say so explicitly.

Large Integers
Python can handle really large integers:

>>> 1000000000000000000
1000000000000000000L

What happened here? The number suddenly got an L tucked onto the end.

■Note If you’re using a version of Python older than 2.2, you get the following behavior:

>>> 1000000000000000000
OverflowError: integer literal too large

The newer versions of Python are more flexible when dealing with big numbers.

Ordinary integers can’t be larger than 2147483647 (or smaller than –2147483648); if you
want really big numbers, you have to use longs. A long (or long integer) is written just like an
ordinary integer but with an L at the end. (You can, in theory, use a lowercase l as well, but that
looks all too much like the digit 1, so I’d advise against it.)

In the previous attempt, Python converted the integer to a long, but you can do that your-
self, too. Let’s try that big number again:

>>> 1000000000000000000L
1000000000000000000L

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 13

Of course, this is only useful in old versions of Python that aren’t capable of figuring this
stuff out.

Well, can you do math with these monster numbers, too? Sure thing. Consider the following:

>>> 1987163987163981639186L * 198763981726391826L + 23
394976626432005567613000143784791693659L

As you can see, you can mix long integers and plain integers as you like. In all likelihood, you
won’t have to worry about the difference between longs and ints unless you’re doing type
checking, as described in Chapter 7—and that’s something you should almost never do.

Hexadecimals and Octals
To conclude this section, I should mention that hexadecimal numbers are written like this:

>>> 0xAF
175

and octal numbers like this:

>>> 010
8

The first digit in both of these is zero. (If you don’t know what this is all about, just close your
eyes and skip to the next section—you’re not missing anything important.)

■Note For a summary of Python’s numeric types and operators, see Appendix B.

Variables
Another concept that might be familiar to you is variables. If math makes you queasy, don’t
worry: Variables in Python are easy to understand. A variable is basically a name that repre-
sents (or refers to) some value. For example, you might want the name x to represent 3. To
make it so, simply execute the following:

>>> x = 3

This is called an assignment. We assign the value 3 to the variable x. Another way of putting
this is to say that we bind the variable x to the value (or object) 3. After a variable has had a value
assigned to it, you can use the variable in expressions:

>>> x * 2
6

Note that you have to assign a value to a variable before you use it. After all, it doesn’t make
any sense to use a variable if it doesn’t represent a value, does it?

14 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

■Note Variable names can consist of letters, digits, and underscore characters (_). A variable can’t begin
with a digit, so Plan9 is a valid variable name, whereas 9Plan is not.

Statements
Until now we’ve been working (almost) exclusively with expressions, the ingredients of the
recipe. But what about statements—the instructions?

In fact, I’ve cheated. I’ve introduced two types of statements already: the print statement,
and assignments. So, what’s the difference between a statement and an expression? Well, an
expression is something, while a statement does something (or, rather, tells the computer to do
something). For example, 2*2 is 4, whereas print 2*2 prints 4. What’s the difference, you may
ask. After all, they behave very similarly. Consider the following:

>>> 2*2
4
>>> print 2*2
4

As long as you execute this in the interactive interpreter the results are similar, but that is only
because the interpreter always prints out the values of all expressions (using the same repre-
sentation as repr—see the section on string representations later in this chapter). That is not
true of Python in general. Later in this chapter, you’ll see how to make programs that run
without this interactive prompt, and simply putting an expression such as 2*2 in your program
won’t do anything interesting.4 Putting print 2*2 in there, on the other hand, will in fact print
out 4.

The difference between statements and expressions may be more obvious when dealing
with assignments. Because they are not expressions, they have no values that can be printed
out by the interactive interpreter:

>>> x = 3
>>>

As you can see, you get a new prompt immediately. Something has changed, however; x is now
bound to the value 3.

This is a defining quality of statements in general: They change things. For example, assign-
ments change variables, and print statements change how your screen looks.

Assignments are, perhaps, the most important type of statement in any programming
language; it may be difficult to grasp their importance right now. Variables may just seem like

4. In case you’re wondering—yes, it does do something. It calculates the product of 2 and 2. However, the
result isn’t kept anywhere or shown to the user; it has no side effects, beyond the calculation itself.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 15

temporary “storage” (like the pots and pans of a cooking recipe), but the real power of variables
is that you needn’t know what values they hold in order to manipulate them.5 For example, you
know that x * y evaluates to the product of x and y even though you may have no knowledge
of what x and y are. So, you may write programs that use variables in various ways without
knowing the values they will eventually hold (or refer to) when the program is run.

Getting Input from the User
You’ve seen that you can write programs with variables without knowing their values. Of course,
the interpreter must know the values eventually. So how can it be that we don’t? The interpreter
knows only what we tell it, right?

Not necessarily. You may have written a program, and somebody else may use it. You cannot
predict what values they will supply to the program. Let’s take a look at the useful function
input. (I’ll have more to say about functions in a minute.)

>>> input("The meaning of life: ")
The meaning of life: 42
42

What happens here is that the first line (input(...)) is executed in the interactive interpreter.
It prints out the string "The meaning of life: " as a new prompt. I type 42 and press Enter. The
resulting value of input is that very number, which is automatically printed out in the last line.
Not very useful. But look at the following:

>>> x = input("x: ")
x: 34
>>> y = input("y: ")
y: 42
>>> print x * y
1428

Here, the statements at the Python prompts (>>>) could be part of a finished program, and the
values entered (34 and 42) would be supplied by some user. Your program would then print out
the value 1428, which is the product of the two. And you didn’t have to know these values when
you wrote the program, right?

■Note This is much more useful when you save your programs in a separate file so other users can execute
it. You learn to do that later in this chapter, in the section “Saving and Executing Your Programs.”

5. Note the quotes on “storage.” Values aren’t stored in variables—they’re stored in some murky depths of
computer memory, and are referred to by variables. As will become abundantly clear as you read on,
more than one variable can refer to the same value.

16 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

SNEAK PEEK: THE IF STATEMENT

To make things a bit more fun, I’ll give you a sneak peek of something you aren’t really supposed to learn
about until Chapter 5: the if statement. The if statement lets you perform an action (another statement) if a
given condition is true. One type of condition is an equality test, using the equality operator ==. (Yes, it’s a
double equality sign. The single one is used for assignments, remember?)

You simply put this condition after the word “if” and then separate it from the following statement with a colon:

>>> if 1 == 2: print 'One equals two'
...
>>> if 1 == 1: print 'One equals one'
...
One equals one
>>>

As you can see, nothing happens when the condition is false. When it is true, however, the following
statement (in this case, a print statement) is executed. Note also that when using if statements in the inter-
active interpreter, you have to press Enter twice before it is executed. (The reason for this will become clear in
Chapter 5—don’t worry about it for now.)

So, if the variable time is bound to the current time in minutes, you could check whether you’re “on the
hour” with the following statement:

if time % 60 == 0: print 'On the hour!'

Functions
In the section on numbers and expressions I used the exponentiation operator (**) to calculate
powers. The fact is that you can use a function instead, called pow:

>>> 2**3
8
>>> pow(2,3)
8

A function is like a little program that you can use to perform a specific action. Python has
lots of functions that can do many wonderful things. In fact, you can make your own functions,
too (more about that later); therefore we often refer to standard functions such as pow as built-in
functions.

Using a function as I did in the preceding example is called calling the function. You supply
it with parameters (in this case, 2 and 3) and it returns a value to you. Because it returns a value,
a function call is simply another type of expression, like the arithmetic expressions discussed
earlier in this chapter.6 In fact, you can combine function calls and operators to create more
complicated expressions:

6. Function calls can also be used as statements if you simply ignore the return value.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 17

>>> 10 + pow(2, 3*5)/3.0
10932.666666666666

■Note The exact number of decimals may vary depending on which version of Python you are using.

There are several built-in functions that can be used in numeric expressions like this. For
example, abs gives the absolute value of a number, and round rounds floating numbers to the
nearest integer:

>>> abs(-10)
10
>>> 1/2
0
>>> round(1.0/2.0)
1.0

Notice the difference between the two last expressions. Integer division always rounds down,
whereas round rounds to the nearest integer. But what if you want to round a given number
down? For example, you might know that a person is 32.9 years old—but you would like to
round that down to 32 because she isn’t really 33 yet. Python has a function for this (called
floor)—it just isn’t available directly. As is the case with many useful functions, it is found in a
module.

Modules
You may think of modules as extensions that can be imported into Python to extend its capa-
bilities. You import modules with a special command called (naturally enough) import. The
function we needed in the previous section (floor) is in a module called math:

>>> import math
>>> math.floor(32.9)
32.0

Notice how this works: We import a module with import, and then use the functions from
that module by writing module.function.

If you want the age to be an integer (32) and not a float (32.0), you can use the
function int:7

>>> int(math.floor(32.9))
32

7. The int function/type will actually round down while converting to an integer, so when converting to
an integer, using math.floor is superfluous; you could simply use int(32.9).

18 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

■Note Similar functions exist to convert to other types (for example, long and float). In fact, these aren’t
completely normal functions—they’re type objects. I’ll have more to say about types later. The opposite of
floor is ceil (short for “ceiling”), which finds the smallest integral value larger than or equal to the given
number.

If you are sure that you won’t import more than one function with a given name (from
different modules), you might not want to write the module name each time you call the function.
Then you can use a variant of the import command:

>>> from math import sqrt
>>> sqrt(9)
3.0

After using from module import function, you can use the function without its module prefix.

■Tip You may, in fact, use variables to refer to functions (and most other things in Python). For example, by
performing the assignment foo = math.sqrt you can start using foo to calculate square roots; for example,
foo(4) yields 2.

cmath and Complex Numbers
The sqrt function is used to calculate the square root of a number. Let’s see what happens if we
supply it with a negative number:

>>> from math import sqrt
>>> sqrt(-1)
Traceback (most recent call last):
 File "<pyshell#23>", line 1, in ?
 sqrt(-1)
ValueError: math domain error

Well, that’s reasonable. You can’t take the square root of a negative number—or can you?
Of course you can: The square root of a negative number is an imaginary number. (This is a
standard mathematical concept—if you find it a bit too mind-bending, you are free to skip ahead.)
So why couldn’t sqrt deal with it? Because it only deals with floats, and imaginary numbers
(and complex numbers, the sum of real and imaginary numbers) are something completely
different—which is why they are covered by a different module, cmath (for complex math):

>>> import cmath
>>> cmath.sqrt(-1)
1j

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 19

Notice that I didn’t use from ... import ... here. If I had, I would have lost my ordinary sqrt.
Name clashes like these can be sneaky, so unless you really want to use the from version, you
should probably stick with a plain import.

The 1j is an imaginary number. These are written with a trailing j (or J), just like longs use
L. Without delving into the theory of complex numbers, let me just show a final example of how
you can use them:

>>> (1+3j) * (9+4j)
(-3+31j)

As you can see, the support for complex numbers is built into the language.

■Note There is no separate type for imaginary numbers in Python. They are treated as complex numbers
whose real component is zero.

Back to the __future__

It has been rumored that Guido van Rossum (Python’s creator) has a time machine because
often when people request features in the language, the features have already been implemented.
Of course, we aren’t all allowed into this time machine, but Guido has been kind enough to
build a part of it into Python, in the form of the magic module __future__. From it we can
import features that will be standard in Python in the future but that aren’t part of the language
yet. You saw this in the section about numbers and expressions, and you’ll be bumping into it
from time to time throughout this book.

Saving and Executing Your Programs
The interactive interpreter is one of Python’s great strengths. It makes it possible to test solutions
and to experiment with the language in real time. If you want to know how something works,
just try it! However, everything you write in the interactive interpreter is lost when you quit.
What you really want to do is write programs that both you and other people can run. In this
section, you learn how to do just that.

First of all, you need a text editor, preferably one intended for programming. (If you use
something like Microsoft Word, be sure to save your code as plain text.) If you are already using
IDLE, you’re in luck: Simply create a new editor window with File ➤ New Window. Another
window appears—without an interactive prompt. Whew!

Start by entering the following:

print "Hello, world!"

Now select File ➤ Save to save your program (which is, in fact, a plain text file). Be sure to
put it somewhere where you can find it later on. You might want to create a directory where
you put all your Python projects, such as C:\python in Windows. In a UNIX environment, you
might use a directory like ~/python. Give your file any reasonable name, such as hello.py. The
.py ending is important.

20 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

■Note If you followed the installation instructions earlier in this chapter, you may have put your Python
installation in ~/python already, but because that has a subdirectory of its own (such as ~/python/
Python-2.4/), this shouldn’t cause any problems. If you would rather put your own programs somewhere
else, feel free to use a directory such as ~/my_python_programs.

Got that? Don’t close the window with your program in it. If you did, just open it again (File ➤
Open). Now you can run it with Edit ➤ Run script, or by pressing Ctrl-F5. (If you aren’t using
IDLE, see the next section about running your programs from the command prompt.)

What happens? Hello, world! is printed in the interpreter windows, which is exactly what
we wanted. The interpreter prompt is gone, but you can get it back by pressing Enter (in the
interpreter window).

Let’s extend our script to the following:

name = raw_input("What is your name? ")
print "Hello, " + name + "!"

■Note Don’t worry about the difference between input and raw_input—I’ll get to that.

If you run this (remember to save it first), you should see the following prompt in the inter-
preter window:

What is your name?

Enter your name, (for example, Gumby) and press Enter. You should get something like this:

Hello, Gumby!

Fun, isn’t it?

Running Your Python Scripts from a Command Prompt
Actually, there are several ways to run your programs. First, let’s assume that you have a DOS
window or a UNIX shell prompt before you and that the Python executable (called python.exe
in Windows, and python in UNIX) has been put in your PATH environment variable.8 Also, let’s
assume that your script from the previous section (hello.py) is in the current directory. Then
you can execute your script with the following command in Windows:

C:\>python hello.py

8. If you don’t understand this sentence, you should perhaps skip the section. You don’t really need it.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 21

or UNIX:

$ python hello.py

As you can see, the command is the same. Only the system prompt changes.

■Note If you don’t want to mess with environment variables, you can simply specify the full path of the
Python interpreter. In Windows, you might do something like this:

C:\>C:\Python24\python hello.py

Making Your Scripts Behave Like Normal Programs
Sometimes you want to execute a Python program (also called a script) the same way you
execute other programs (such as your Web browser, or your text editor), rather than explicitly
using the Python interpreter. In UNIX, there is a standard way of doing this: have the first line
of your script begin with the character sequence #! (called pound bang or shebang) followed by
the absolute path to the program that interprets the script (in our case Python). Even if you
didn’t quite understand that, just put the following in the first line of your script if you want it
to run easily on UNIX:

#!/usr/bin/env python

This should run the script, regardless of where the Python binary is located.

■Note In some systems if you install a recent version of Python (e.g., 2.4) you will still have an old one lying
around (e.g.,1.5.2), which is needed by some system programs (so you can’t uninstall it). In such cases, the
/usr/bin/env trick is not a good idea, as you will probably end up with your programs being executed by
the old Python. Instead, you should find the exact location of your new Python executable (probably called
python or python2) and use the full path in the pound bang line, like this:

#/usr/bin/python2

The exact path may vary from system to system.

Before you can actually run your script, you must make it executable:

$ chmod a+x hello.py

Now it can be run like this (assuming that you have the current directory in your path):

$ hello.py

22 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

■Note If this doesn’t work, try using ./hello.py instead, which will work even if the current directory (.)
is not part of your execution path.

If you like, you can rename your file and remove the py suffix to make it look more like a normal
program.

What About Double-Clicking?

In Windows, the suffix (.py) is the key to making your script behave like a program. Try double-
clicking the file hello.py you saved in the previous section. If Python was installed correctly,
a DOS window appears with the prompt “What is your name?” Cool, huh? (You’ll see how to
make your programs look better, with buttons, menus, and so on later.)

There is one problem with running your program like this, however. Once you’ve entered
your name, the program window closes before you can read the result. The window closes
when the program is finished. Try changing the script by adding the following line at the end:

raw_input("Press <enter>")

Now, after running the program and entering your name, you should have a DOS window
with the following contents:

What is your name? Gumby
Hello, Gumby!
Press <enter>

Once you press the Enter key, the window closes (because the program is finished). Just as a
teaser, rename your file hello.pyw. (This is Windows-specific.) Double-click it as before. What
happens? Nothing! How can that be? I will tell you later in the book—I promise.

Comments
The hash sign (#) is a bit special in Python. When you put it in your code, everything to the right
of it is ignored (which is why the Python interpreter didn’t choke on the /usr/bin/env stuff
used earlier). For example:

Print the circumference of the circle:
print 2 * pi * radius

The first line here is called a comment, which can be useful in making programs easier to
understand—both for other people and for yourself when you come back to old code. It has
been said that the first commandment of programmers is “Thou Shalt Comment” (although
some less charitable programmers swear by the motto “If it was hard to write, it should be hard
to read”). Make sure your comments say significant things and don’t simply restate what is
already obvious from the code. Useless, redundant comments may be worse than none. For
example, in the following example, a comment isn’t really called for:

Get the user's name:
user_name = raw_input("What is your name?")

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 23

It’s always a good idea to make your code readable on its own as well, even without the
comments. Luckily, Python is an excellent language for writing readable programs.

Strings
Now what was all that raw_input and "Hello, " + name + "!" stuff about? Let’s tackle the
"Hello" part first and leave raw_input for later.

The first program in this chapter was simply

print "Hello, world!"

It is customary to begin with a program like this in programming tutorials—the problem is that I
haven’t really explained how it works yet. Well, you know the basics of the print statement (I’ll have
more to say about that later), but what is "Hello, world!"? It’s called a string (as in “a string of char-
acters”). Strings are found in almost every useful, real-world Python program and have many uses,
the main one being to represent a bit of text, such as the exclamation “Hello, world!”

Single-Quoted Strings and Escaping Quotes
Strings are values, just like numbers are:

>>> "Hello, world!"
'Hello, world!'

There is one thing that may be a bit surprising about this example, though: When Python
printed out our string, it used single quotes, whereas we used double quotes. What’s the differ-
ence? Actually, there is no difference:

>>> 'Hello, world!'
'Hello, world!'

Here, too, we use single quotes, and the result is the same. So why allow both? Because in some
cases it may be useful:

>>> "Let's go!"
"Let's go!"
>>> '"Hello, world!" she said'
'"Hello, world!" she said'

In the preceding code, the first string contains a single quote (or apostrophe, as we should
perhaps call it in this context), and therefore we can’t use single quotes to enclose the string.
If we did, the interpreter would complain (and rightly so):

>>> 'Let's go!'
SyntaxError: invalid syntax

Here, the string is 'Let', and Python doesn’t quite know what to do with the following s (or the
rest of the line, for that matter).

In the second string, we use double quotes as part of our sentence. Therefore, we have to
use single quotes to enclose our string, for the same reasons as stated previously. Or, actually

24 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

we don’t have to. It’s just convenient. An alternative is to use the backslash character (\) to
escape the quotes in the string, like this:

>>> 'Let\'s go!'
"Let's go!"

Python understands that the middle single quote is a character in the string and not the
end of the string. (Even so, Python chooses to use double quotes when printing out the string.)
The same works with double quotes, as you might expect:

>>> "\"Hello, world!\" she said"
'"Hello, world!" she said'

Escaping quotes like this can be useful, and sometimes necessary. For example, what would
you do without the backslash if your string contained both a single quote and a double quote,
as in the string 'Let\'s say "Hello, world!"'?

■Note Tired of backslashes? As you will see later in this chapter, you can avoid most of them by using long
strings and raw strings (which can be combined).

Concatenating Strings
Just to keep whipping this slightly tortured example, let me show you another way of writing
the same string:

>>> "Let's say " '"Hello, world!"'
'Let\'s say "Hello, world!"'

I’ve simply written two strings, one after the other, and Python automatically concatenates
them (makes them into one string). This mechanism isn’t used very often, but it can be useful
at times. However, it only works when you actually write both strings at the same time, directly
following one another:

>>> x = "Hello, "
>>> y = "world!"
>>> x y
SyntaxError: invalid syntax

In other words, this is just a special way of writing strings, not a general method of concat-
enating them. How, then, do you concatenate strings? Just like you add numbers:

>>> "Hello, " + "world!"
'Hello, world!'
>>> x = "Hello, "
>>> y = "world!"
>>> x + y
'Hello, world!'

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 25

String Representations, str and repr
Throughout these examples, you have probably noticed that all the strings printed out by
Python are still quoted. That’s because it prints out the value as it might be written in Python
code, not how you would like it to look for the user. If you use print, however, the result is
different:

>>> "Hello, world!"
'Hello, world!'
>>> 10000L
10000L
>>> print "Hello, world!"
Hello, world!
>>> print 10000L
10000

As you can see, the long integer 10000L is simply the number 10000 and should be written that
way when presented to the user. But when you want to know what value a variable refers to,
you may be interested in whether it’s a normal integer or a long, for example.

What is actually going on here is that values are converted to strings through two different
mechanisms. You can use both mechanisms yourself, through the functions str, which simply
converts a value into a string in some reasonable fashion that will probably be understood by a
user, for example, and repr, which creates a string that is a representation of the value as a legal
Python expression:9

>>> print repr("Hello, world!")
'Hello, world!'
>>> print repr(10000L)
10000L
>>> print str("Hello, world!")
Hello, world!
>>> print str(10000L)
10000

A synonym for repr(x) is ̀ x` (here you use backticks, not single quotes). This can be useful
when you want to print out a sentence containing a number, for example:

>>> temp = 42
>>> print "The temperature is " + temp
Traceback (most recent call last):
 File "<pyshell#61>", line 1, in ?
 print "The temperature is " + temp
TypeError: cannot add type "int" to string
>>> print "The temperature is " + `temp`
The temperature is 42

The first print statement doesn’t work because you can’t add a string to a number. The second
one, however, works because I have converted temp to the string "42" by using the backticks.

9. Actually, str is a type, just like int and long. repr, however, is simply a function.

26 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

(I might, of course, just as well have used repr, which means the same thing, but may be a bit
clearer. Actually, in this case, I could also have used str. Don’t worry too much about this
right now.)

In short: str, repr, and backticks are three ways of converting a Python value to a string.
The function str makes it look good, while repr (and the backticks) tries to make the resulting
string a legal Python expression.

input vs. raw_input
Now you know what "Hello, " + name + "!" means. But what about raw_input? Isn’t input
good enough? Let’s try it. Enter the following in a separate script file:

name = input("What is your name? ")
print "Hello, " + name + "!"

This is a perfectly valid program, but as you will soon see, it’s a bit unpractical. Let’s try to
run it:

What is your name? Gumby
Traceback (most recent call last):
 File "C:/python/test.py", line 2, in ?
 name = input("What is your name? ")
 File "<string>", line 0, in ?
NameError: name 'Gumby' is not defined

The problem is that input assumes that what you enter is a valid Python expression (it’s more
or less the inverse of repr). If you write your name as a string, that’s no problem:

What is your name? "Gumby"
Hello, Gumby!

However, it’s just a bit too much to ask that the user write his or her name in quotes like this;
therefore we use raw_input, which treats all input as raw data, and puts it into a string:

>>> input("Enter a number: ")
Enter a number: 3
3
>>> raw_input("Enter a number: ")
Enter a number: 3
'3'

Unless you have a special need for input, you should probably use raw_input.

Long Strings, Raw Strings, and Unicode
Before ending this chapter, I want to first tell you about yet another couple of ways of writing
strings. These alternate string syntaxes can be useful when you have strings that span several
lines, or that contain various special characters.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 27

Long Strings

If you want to write a really long string, one that spans several lines, you can use triple quotes
instead of ordinary quotes:

print '''This is a very long string.
It continues here.
And it's not over yet.
"Hello, world!"
Still here.'''

You can also use triple double quotes, """like this""". Note that because of the distinctive
enclosing quotes, both single and double quotes are allowed inside, without being backslash-
escaped.

■Tip Ordinary strings can also span several lines. If the last character on a line is a backslash, the line break
itself is “escaped,” and is ignored. For example:

print "Hello, \
world!"

would print out Hello, world!. The same goes for expressions and statements in general:

>>> 1 + 2 + \
 4 + 5
12
>>> print \
 'Hello, world'
Hello, world

Raw Strings

Raw strings aren’t too picky about backslashes, which can be very useful sometimes.10 In ordi-
nary strings, the backslash has a special role: It escapes things, letting you put things into your
string that you couldn’t normally write directly. For example, a new line is written \n, and can
be put into a string like this:

>>> print 'Hello,\nworld!'
Hello,
world!

This is normally just dandy, but in some cases it’s not what you want. What if you wanted the
string to include a backslash followed by an n? You might want to put the DOS pathname
C:\nowhere into a string, for example:

10. Especially when writing regular expressions. More about those in Chapter 10.

28 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

>>> path = 'C:\nowhere'
>>> path
'C:\nowhere'

This looks correct, until you print it and discover the flaw:

>>> print path
C:
owhere

Not exactly what we were after, is it? So what do we do? We can escape the backslash itself:

>>> print 'C:\\nowhere'
C:\nowhere

This is just fine. But for long paths, you wind up with a lot of backslashes:

path = 'C:\\Program Files\\fnord\\foo\\bar\\baz\\frozz\\bozz'

Raw strings are useful in such cases. They don’t treat the backslash as a special character
at all. Every character you put into a raw string stays the way you wrote it:

>>> print r'C:\nowhere'
C:\nowhere
>>> print r'C:\Program Files\fnord\foo\bar\baz\frozz\bozz'
C:\Program Files\fnord\foo\bar\baz\frozz\bozz

As you can see, raw strings are written with an r in front. It would seem that you can put almost
anything inside a raw string, and that is almost true. Of course, quotes have to be escaped as
usual, although that means that you get a backslash in your final string, too:

>>> print r'Let\'s go!'
Let\'s go!

The one thing you can’t have in a raw string is a final backslash. In other words, the last
character in a raw string cannot be a backslash. Given the previous example, that ought to be
obvious. If the last character (before the final quote) is a backslash, Python won’t know whether
to end the string or not:

>>> print r"This is illegal\"
SyntaxError: invalid token

Okay, so it’s reasonable, but what if you want the last character in your raw string to be a
backslash? (Perhaps it’s the end of a DOS path, for example.) Well, I’ve given you a whole bag
of tricks in this section that should help you solve that problem, but basically you need to put
the backslash in a separate string. A simple way of doing that is the following:

>>> print r'C:\Program Files\foo\bar' '\\'
C:\Program Files\foo\bar\

Note that you can use both single and double quotes with raw strings. Even triple-quoted
strings can be raw.

C H A P T E R 1 ■ I N ST A N T H AC K I N G : T H E B A S I C S 29

Unicode Strings

The final type of string constant is the Unicode string (or Unicode object—they don’t really
belong to the same type as strings). If you don’t know what Unicode is, you probably don’t
need to know about this. (If you want to find out more about it, you can go to the Unicode Web
site, www.unicode.org.) Normal strings in Python are stored internally as 8-bit ASCII, while
Unicode strings are stored as 16-bit Unicode. This allows for a more varied set of characters,
including special characters from most languages in the world. I’ll restrict my treatment of
Unicode strings to the following:

>>> u'Hello, world!'
u'Hello, world!'

As you can see, Unicode strings use the prefix u, just as raw strings use the prefix r.

A Quick Summary
This chapter covers quite a bit of material. Let’s take a look at what you’ve learned before
moving on.

Algorithms. An algorithm is a recipe telling you exactly how to perform a task. When you
program a computer, you are essentially describing an algorithm in a language the computer
can understand, such as Python. Such a machine-friendly description is called a program,
and it mainly consists of expressions and statements.

Expressions. An expression is a part of a computer program that represents a value. For
example, 2+2 is an expression, representing the value 4. Simple expressions are built from
literal values (such as 2 or "Hello") by using operators (such as + or %) and functions (such
as pow). More complicated expressions can be created by combining simpler expressions
(e.g., (2+2)*(3-1)). Expressions may also contain variables.

Variables. A variable is a name that represents a value. New values may be assigned to
variables through assignments such as x = 2. An assignment is a kind of statement.

Statements. A statement is an instruction that tells the computer to do something. That
may involve changing variables (through assignments), printing things to the screen (such
as print "Hello, world!"), importing modules, or a host of other stuff.

Functions. Functions in Python work just like functions in mathematics: They may take
some arguments, and they return a result. (They may actually do lots of interesting stuff
before returning, as you will find out when you learn to write your own functions in
Chapter 6.)

Modules. Modules are extensions that can be imported into Python to extend its capabili-
ties. For example, several useful mathematical functions are available in the math module.

Programs. You have looked at the practicalities of writing, saving, and running Python
programs.

30 C H A P T E R 1 ■ I N S T A N T H A C K I N G : T H E B A S I C S

Strings. Strings are really simple—they are just pieces of text. And yet there is a lot to know
about them. In this chapter, you’ve seen many ways to write them, and in Chapter 3 you
learn many ways of using them.

New Functions in This Chapter

What Now?
Now that you know the basics of expressions, let’s move on to something a bit more advanced:
data structures. Instead of dealing with simple values (such as numbers), you’ll see how to
bunch them together in more complex structures, such as lists and dictionaries. In addition,
you’ll take another close look at strings. In Chapter 5, you learn more about statements, and
after that you’ll be ready to write some really nifty programs.

Function Description

abs(number) Returns the absolute value of a number

cmath.sqrt(number) Square root, also for negative numbers

float(object) Converts a string or number to a floating-point number

help() Offers interactive help

input(prompt) Gets input from the user

int(object) Converts a string or number to an integer

long(object) Converts a string or number to a long integer

math.ceil(number) Returns the ceiling of a number as a float

math.floor(number) Returns the floor of a number as a float

math.sqrt(number) Square root, not for negative numbers

pow(x, y[, z]) x to the power of y (modulo z)

raw_input(prompt) Gets input from the user, as a string

repr(object) Returns a string-representation of a value

round(number[, ndigits]) Rounds a number to a given precision

str(object) Converts a value to a string

31

■ ■ ■

C H A P T E R 2

Lists and Tuples

This chapter introduces a new concept: data structures. A data structure is a collection of data
elements (such as numbers or characters—or even other data structures) that is structured in
some way, for example, by numbering the elements. The most basic data structure in Python is
the sequence. Each element of a sequence is assigned a number—its position, or index. The first
index is zero, the second index is one, and so forth.

■Note When you count or number things in your daily life, you probably start counting from 1. The numbering
scheme used in Python may seem odd, but it is actually quite natural. One of the reasons for this, as you see
later in the chapter, is that you can also count from the end: The last item of a sequence is numbered –1, the
next-to-last –2, and so forth. That means you can count forward or backward from the first element, which
lies at the beginning, or zero. Trust me, you get used to it.

Python has six built-in types of sequences, but let’s concentrate on two of the most common
ones—lists and tuples. The main difference between these is that you can change a list, but you
can’t change a tuple. This means a list might be useful if you need to add elements as you go
along, while a tuple can be useful if, for some reason, you can’t allow the sequence to change.
Reasons for the latter are usually rather technical, having to do with how things work internally
in Python. That’s why you may see built-in functions returning tuples. For your own programs,
chances are you can use lists instead of tuples in almost all circumstances. (One notable excep-
tion, as described in Chapter 4, is using tuples as dictionary keys. There lists aren’t allowed,
because you aren’t allowed to modify keys.)

■Note The other built-in sequence types are strings (which I revisit in the next chapter), Unicode strings,
buffer objects, and xrange objects.

32 C H A P T E R 2 ■ L I S T S A N D T U P L E S

Sequences are useful when you want to work with a collection of values. You might have a
sequence representing a person in a database, with the first element being their name, and the
second their age. Written as a list (the items of a list are separated by commas and enclosed in
square brackets), that would look like this:

>>> edward = ['Edward Gumby', 42]

But sequences can contain other sequences, too, so you could make a list of such persons,
which would be your database:

>>> edward = ['Edward Gumby', 42]
>>> john = ['John Smith', 50]
>>> database = [edward, john]
>>> database
[['Edward Gumby', 42], ['John Smith', 50]]

This chapter begins with some operations that are common to all sequences, including
lists and tuples. These operations will also work with strings, which will be used in some of the
examples, although for a full treatment of string operations, you have to wait until the next
chapter.

After dealing with these basics, we start working with lists and see what’s special about them.
After lists, we come to tuples, which are very similar to lists, except that you can’t change them.

■Note Python has a basic notion of a kind of data structure called a container, which is basically any object
that can contain other objects. The two main kinds of containers are sequences (such as lists and tuples) and
mappings (such as dictionaries). While the elements of a sequence are numbered, each element in a mapping
has a name (also called a key). You learn more about mappings in Chapter 4. For an example of a container
type that is neither a sequence nor a mapping, see the discussion of sets in Chapter 10.

Common Sequence Operations
There are certain things you can do with all sequence types. These operations include indexing,
slicing, adding, multiplying, and checking for membership. In addition, Python has built-in
functions for finding the length of a sequence, and for finding its largest and smallest elements.

■Note One important operation not covered here is iteration. To iterate over a sequence means to perform
certain actions repeatedly, once per element in the sequence. To learn more about this, see the section
“Loops” in Chapter 5.

C H A P T E R 2 ■ L I S T S AN D T U P L E S 33

Indexing
All elements in a sequence are numbered—from zero and upwards. You can access them
individually with a number, like this:

>>> greeting = 'Hello'
>>> greeting[0]
'H'

■Note A string is just a sequence of characters. The index 0 refers to the first element, in this case the letter H.

This is called indexing—you use an index to fetch an element. All sequences can be indexed in
this way. When you use a negative index, Python counts from the right, that is, from the last
element. The last element is at position –1 (not –0, as that would be the same as the first element):

>>> greeting[-1]
'o'

String literals (and other sequence literals, for that matter) may be indexed directly, without
using a variable to refer to them. The effect is exactly the same:

>>> 'Hello'[1]
'e'

If a function call returns a sequence, you can index it directly. For instance, if you are simply
interested in the fourth digit in a year entered by the user, you could do something like this:

>>> fourth = raw_input('Year: ')[3]
Year: 2005
>>> fourth
'5'

Example

Listing 2-1 contains an example program that asks you for a year, a month (as a number from 1 to 12), and a day
(1 to 31), and then prints out the date with the proper month name and so on. An example session with this program
might be as follows:

Year: 1974
Month (1-12): 8
Day (1-31): 16
August 16th, 1974

The last line is the output from the program.

34 C H A P T E R 2 ■ L I S T S A N D T U P L E S

Listing 2-1. Indexing Example

Print out a date, given year, month, and day as numbers

months = [
 'January',
 'February',
 'March',
 'April',
 'May',
 'June',
 'July',
 'August',
 'September',
 'October',
 'November',
 'December'
]

A list with one ending for each number from 1 to 31
endings = ['st', 'nd', 'rd'] + 17 * ['th'] \
 + ['st', 'nd', 'rd'] + 7 * ['th'] \
 + ['st']

year = raw_input('Year: ')
month = raw_input('Month (1-12): ')
day = raw_input('Day (1-31): ')

month_number = int(month)
day_number = int(day)

Remember to subtract 1 from month and day to get a correct index
month_name = months[month_number-1]
ordinal = day + endings[day_number-1]

print month_name + ' ' + ordinal + ', ' + year

Slicing
Just as you use indexing to access individual elements, you can use slicing to access ranges of
elements. You do this by using two indices, separated by a colon:

>>> tag = 'Python web site'
>>> tag[9:30]
'http://www.python.org'
>>> tag[32:-4]
'Python web site'

C H A P T E R 2 ■ L I S T S AN D T U P L E S 35

As you can see, slicing is very useful for extracting parts of a sequence. The numbering
here is very important. The first index is the number of the first element you want to include.
However, the last index is the number of the first element after your slice. Consider the following:

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> numbers[3:6]
[4, 5, 6]
>>> numbers[0:1]
[1]

In short, you supply two indices as limits for your slice, where the first is inclusive, and the
second is exclusive.

A Nifty Shortcut

Let’s say you want to access the last three elements of numbers (from the previous example).
You could do it explicitly, of course:

>>> numbers[7:10]
[8, 9, 10]

Now, the index 10 refers to element 11—which does not exist, but is one step after the last
element you want. Got it?

Now, this is fine, but what if you want to count from the end?

>>> numbers[-3:-1]
[8, 9]

It seems you cannot access the last element this way. How about using 0 as the element
“one step beyond” the end?

>>> numbers[-3:0]
[]

Not exactly the desired result. In fact, any time the leftmost index in a slice comes later in
the sequence than the second one (in this case, the third-to-last coming later than the first), the
result is always an empty sequence. Luckily, you can use a shortcut: If the slice continues to the
end of the sequence, you may simply leave out the last index:

>>> numbers[-3:]
[8, 9, 10]

The same thing works from the beginning:

>>> numbers[:3]
[1, 2, 3]

In fact, if you want to copy the entire sequence, you may leave out both indices:

>>> numbers[:]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

36 C H A P T E R 2 ■ L I S T S A N D T U P L E S

Example

Listing 2-2 contains a small program that prompts you for a URL, and (assuming it is of the form http://
www.somedomainname.com) extracts the domain name. Here is a sample run of the program:

Please enter the URL: http://www.python.org
Domain name: python

Listing 2-2. Slicing Example

Split up a URL of the form http://www.something.com

url = raw_input('Please enter the URL: ')
domain = url[11:-4]

print "Domain name: " + domain

Longer Steps

When slicing, you specify (either explicitly or implicitly) the start and end points of the slice.
Another parameter (added to the built-in types in Python 2.3), which normally is left implicit,
is the step length. In a regular slice, the step length is one—the slice “moves” from one element
to the next, returning all the elements between the start and end:

>>> numbers[0:10:1]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In this example, you can see that the slice includes another number. This is, as you may
have guessed, the step size, made explicit. If the step size is set to a number greater than one,
elements will be skipped. For example, a step size of two will include only every other element
of the interval between the start and the end:

>>> numbers[0:10:2]
[1, 3, 5, 7, 9]
numbers[3:6:3]
[4]

You can still use the shortcuts mentioned earlier; if you want every fourth element of a
sequence, you only have to supply a step size of four:

>>> numbers[::4]
[1, 5, 9]

Naturally, the step size can’t be zero—that wouldn’t get you anywhere—but it can be
negative, which means extracting the elements from right to left:

C H A P T E R 2 ■ L I S T S AN D T U P L E S 37

>>> numbers[8:3:-1]
[9, 8, 7, 6, 5]
>>> numbers[10:0:-2]
[10, 8, 6, 4, 2]
>>> numbers[0:10:-2]
[]
>>> numbers[::-2]
[10, 8, 6, 4, 2]
>>> numbers[5::-2]
[6, 4, 2]
>>> numbers[:5:-2]
[10, 8]

Getting things right here can involve a bit of thinking. As you can see, the first limit (the
leftmost) is still inclusive, while the second (the rightmost) is exclusive. When using a negative
step size, you have to have a first limit (start index) that is higher than the second one. What
may be a bit confusing is that when you leave the start and end indices implicit, Python does
the “right thing” here; for a positive step size it moves from the beginning toward the end, and
for a negative step size it moves from the end toward the beginning.

Adding Sequences
Sequences can be concatenated with the addition (plus) operator:

>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> 'Hello, ' + 'world!'
'Hello, world!'
>>> [1, 2, 3] + 'world!'
Traceback (innermost last):
 File "<pyshell#2>", line 1, in ?
 [1, 2, 3] + 'world!'
TypeError: can only concatenate list (not "string") to list

As you can see from the error message, you can’t concatenate a list and a string, although
both are sequences. In general, you can only concatenate two sequences of the same kind.

Multiplication
Multiplying a sequence by a number x creates a new sequence where the original sequence is
repeated x times:

>>> 'python' * 5
'pythonpythonpythonpythonpython'
>>> [42] * 10
[42, 42, 42, 42, 42, 42, 42, 42, 42, 42]

38 C H A P T E R 2 ■ L I S T S A N D T U P L E S

None, Empty Lists, and Initialization

An empty list is simply written as two brackets ([])—there’s nothing in it. But what if you want
to have a list with room for ten elements but with nothing useful in it? You could use [42]*10,
as before, or perhaps more realistically [0]*10. You now have a list with ten zeros in it. Some-
times, however, you would like a value that somehow means “nothing,” as in “we haven’t put
anything here yet.” That’s when you use None. None is a Python value and means exactly that—
“nothing here.” So if you want to initialize a list of length 10, you could do the following:

>>> sequence = [None] * 10
>>> sequence
[None, None, None, None, None, None, None, None, None, None]

Listing 2-3 contains a program that prints (to the screen) a “box” made up of characters,
which is centered on the screen and adapted to the size of a sentence supplied by the user. The
following is a sample run:

Sentence: He's a very naughty boy!

 +——————————————————————————+
 | |
 | He's a very naughty boy! |
 | |
 +——————————————————————————+

The code may look complicated, but it’s basically just arithmetic—figuring out how many
spaces, dashes, and so on you need in order to place things correctly.

Listing 2-3. Sequence (String) Multiplication Example

Prints a sentence in a centered "box" of correct width

Note that the integer division operator (//) only works in Python
2.2 and newer. In earlier versions, simply use plain division (/)

sentence = raw_input("Sentence: ")

screen_width = 80
text_width = len(sentence)
box_width = text_width + 6
left_margin = (screen_width - box_width) // 2

print
print ' ' * left_margin + '+' + '-' * (box_width-2) + '+'
print ' ' * left_margin + '| ' + ' ' * text_width + ' |'
print ' ' * left_margin + '| ' + sentence + ' |'
print ' ' * left_margin + '| ' + ' ' * text_width + ' |'
print ' ' * left_margin + '+' + '-' * (box_width-2) + '+'
print

C H A P T E R 2 ■ L I S T S AN D T U P L E S 39

Membership
To check whether a value can be found in a sequence, you use the in operator. This operator is
a bit different from the ones discussed so far (such as multiplication or addition). It checks
whether something is true, and returns a value accordingly: True for true and False for false.
Such operators are called Boolean operators, and the truth values are called Boolean values.
You learn more about Boolean expressions in the section on conditional statements in Chapter 5.

Here are some examples that use the in operator:

>>> permissions = 'rw'
>>> 'w' in permissions
True
>>> 'x' in permissions
False
>>> users = ['mlh', 'foo', 'bar']
>>> raw_input('Enter your user name: ') in users
Enter your user name: mlh
True
>>> subject = '$$$ Get rich now!!! $$$'
>>> '$$$' in subject
True

The first two examples use the membership test to check whether 'w' and 'x' respectively
are found in the string permissions. This could be a script on a UNIX machine checking for
writing and execution permissions on a file. The next example checks whether a supplied user
name (mlh) is found in a list of users. This could be useful if your program enforces some security
policy. (In that case, you would probably want to use passwords as well.) The last example
could be a part of a spam filter, for example—it checks whether the string subject contains the
string '$$$'.

■Note The last example is a bit different from the others. In general, the in operator checks whether an
object is a member (that is, an element) of a sequence (or some other collection). However, the only members
or elements of a string are its characters. So, the following makes perfect sense:

>>> 'P' in 'Python'
True

In fact, in earlier versions of Python this was the only membership check that worked with strings—finding
out whether a character is found in a string. Trying to check for a longer substring, such as '$$$', would give
you an error message (it would raise a TypeError), and you’d have to use a string method. You learn more
about those in Chapter 3. From Python 2.3, however, you can use the in operator to check whether any string
is a substring of another.

Listing 2-4 shows a program that reads in a user name and checks the entered PIN code
against a database (a list, actually) that contains pairs (more lists) of names and PIN codes. If

40 C H A P T E R 2 ■ L I S T S A N D T U P L E S

the name/PIN pair is found in the database, the string 'Access granted' is printed. (The if
statement was mentioned in Chapter 1 and will be fully explained in Chapter 5.)

Listing 2-4. Sequence Membership Example

Check a user name and PIN code

database = [
 ['albert', '1234'],
 ['dilbert', '4242'],
 ['smith', '7524'],
 ['jones', '9843']
]

username = raw_input('User name: ')
pin = raw_input('PIN code: ')

if [username, pin] in database: print 'Access granted'

Length, Minimum, and Maximum
The built-in functions len, min, and max can be quite useful. The function len returns the
number of elements a sequence contains, while min and max return the smallest and largest
element of the sequence respectively. (You learn more about comparing objects in Chapter 5,
in the section “Comparison Operators.”)

>>> numbers = [100, 34, 678]
>>> len(numbers)
3
>>> max(numbers)
678
>>> min(numbers)
34
>>> max(2, 3)
3
>>> min(9, 3, 2, 5)
2

How this works should be clear from the previous explanation, except possibly the last two
expressions. Here max and min are not called with a sequence argument; the numbers are supplied
directly as arguments.

Lists: Python’s Workhorse
In the previous examples, I’ve used lists quite a bit. You’ve seen how useful they are, but this
section deals with what makes them different from tuples and strings: Lists are mutable—that
is, you can change their contents—and they have many useful specialized methods.

C H A P T E R 2 ■ L I S T S AN D T U P L E S 41

The list Function
Because strings can’t be modified in the same way as lists, often it can be useful to create a list
from a string. You can do this with the list function:1

>>> list('Hello')
['H', 'e', 'l', 'l', 'o']

Note that list works with all kinds of sequences, not just strings.

■Tip To convert a list of characters such as the preceding code back to a string, you would use the following
expression:

''.join(somelist)

where somelist is your list. For an explanation of what this really means, see the section about join in
Chapter 3.

Basic List Operations
You can perform all the standard sequence operations on lists, such as indexing, slicing,
concatenating, and multiplying; but the interesting thing about lists is that they can be modi-
fied. In this section, you see some of the ways you can change a list: item assignments, item
deletion, slice assignments, and list methods. (Note that not all list methods actually change
their list.)

Changing Lists: Item Assignments

Changing a list is easy. You just use ordinary assignment as explained in the first chapter.
However, instead of writing something like x = 2, you use the indexing notation to assign to
a specific, existing position, such as x[1] = 2.

>>> x = [1, 1, 1]
>>> x[1] = 2
>>> x
[1, 2, 1]

■Note You cannot assign to a position that doesn’t exist; if your list is of length 2, you cannot assign a value
to index 100. To do that, you would have to make a list of length 101 (or more). See the section “None, Empty
Lists, and Initialization,” earlier in this chapter.

1. It’s actually a type, not a function, but the difference isn’t important right now.

42 C H A P T E R 2 ■ L I S T S A N D T U P L E S

Deleting Elements

Deleting elements from a list is easy too; you can simply use the del statement:

>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl']
>>> del names[2]
>>> names
['Alice', 'Beth', 'Dee-Dee', 'Earl']

Notice how Cecil is completely gone, and the length of the list has shrunk from five to four.
The del statement may be used to delete things other than list elements. It can be used

with dictionaries (see Chapter 4) or even variables. For more information, see Chapter 5.

Assigning to Slices

Slicing is a very powerful feature, and it is made even more powerful by the fact that you can
assign to slices:

>>> name = list('Perl')
>>> name
['P', 'e', 'r', 'l']
>>> name[2:] = list('ar')
>>> name
['P', 'e', 'a', 'r']

So you can assign to several positions at once. You may wonder what the big deal is. Couldn’t
you just have assigned to them one at a time? Sure, but when you use slice assignments, you
may also replace the slice with a sequence whose length is different from that of the original:

>>> name = list('Perl')
>>> name[1:] = list('ython')
>>> name
['P', 'y', 't', 'h', 'o', 'n']

Slice assignments can even be used to insert elements without replacing any of the
original ones:

>>> numbers = [1, 5]
>>> numbers[1:1] = [2, 3, 4]
>>> numbers
[1, 2, 3, 4, 5]

Here, I basically “replaced” an empty slice, thereby really inserting a sequence. You can do
the reverse to delete a slice:

>>> numbers
[1, 2, 3, 4, 5]
>>> numbers[1:4] = []
>>> numbers
[1, 5]

As you may have guessed, this last example is equivalent to del numbers[1:4].

C H A P T E R 2 ■ L I S T S AN D T U P L E S 43

List Methods
You’ve encountered functions already, but now it’s time to meet a close relative: methods.

■Note You get a much more detailed explanation of what methods really are in Chapter 7.

A method is a function that is tightly coupled to some object, be it a list, a number, a string,
or whatever. In general, a method is called like this:

object.method(arguments)

As you can see, a method call looks just like a function call, except that the object is put
before the method name, with a dot separating them. Lists have several methods that allow
you to examine or modify their contents.

append

The append method is used to append an object to the end of a list:

>>> lst = [1, 2, 3]
>>> lst.append(4)
>>> lst
[1, 2, 3, 4]

You might wonder why I have chosen such an ugly name as lst for my list. Why not call it
list? I could do that, but as you might remember, list is a built-in function.2 If I use the name
for a list instead, I won’t be able to call the function anymore. You can generally find better names
for a given application. A name such as lst really doesn’t tell you anything. So if your list is a list
of prices, for instance, you probably ought to call it something like prices, prices_of_eggs, or
pricesOfEggs.

It’s also important to note that append, like several similar methods, changes the list in
place. This means that it does not simply return a new, modified list—it modifies the old one
directly. This is usually what you want, but it may sometimes cause trouble. I’ll return to this
discussion when I describe sort later in the chapter.

count

The count method counts the occurrences of an element in a list:

>>> ['to', 'be', 'or', 'not', 'to', 'be'].count('to')
2
>>> x = [[1, 2], 1, 1, [2, 1, [1, 2]]]
>>> x.count(1)
2
>>> x.count([1, 2])
1

2. Actually, from version 2.2 of Python, list is a type, not a function. (This is the case with tuple and str
as well.) For the full story on this, see the section “Subclassing list, dict, and str,” in Chapter 9.

44 C H A P T E R 2 ■ L I S T S A N D T U P L E S

extend

The extend method allows you to append several values at once by supplying a sequence of the
values you want to append. In other words, your original list has been extended by the other one:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a.extend(b)
>>> a
[1, 2, 3, 4, 5, 6]

This may seem similar to concatenation, but the important difference is that the extended
sequence (in this case, a) is modified. This is not the case in ordinary concatenation, in which
a completely new sequence is returned:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a + b
[1, 2, 3, 4, 5, 6]
>>> a
[1, 2, 3]

As you can see, the concatenated list looks exactly the same as the extended one in the
previous example, yet a hasn’t changed this time. Because ordinary concatenation has to make
a new list that contains copies of a and b, it isn’t quite as efficient as using extend if what you
want is something like this:

>>> a = a + b

Also, this isn’t an in-place operation—it won’t modify the original.
The effect of extend can be achieved by assigning to slices, as follows:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a[len(a):] = b
>>> a
[1, 2, 3, 4, 5, 6]

While this works, it isn’t quite as readable.

index

The index method is used for searching lists to find the index of the first occurrence of a value:

>>> knights = ['We', 'are', 'the', 'knights', 'who', 'say', 'ni']
>>> knights.index('who')
4
>>> knights.index('herring')
Traceback (innermost last):
 File "<pyshell#76>", line 1, in ?
 knights.index('herring')
ValueError: list.index(x): x not in list

C H A P T E R 2 ■ L I S T S AN D T U P L E S 45

When you search for the word “who,” you find that it’s located at index 4:

>>> knights[4]
'who'

However, when you search for 'herring', you get an exception because the word is not
found at all.

insert

The insert method is used to insert an object into a list:

>>> numbers = [1, 2, 3, 5, 6, 7]
>>> numbers.insert(3, 'four')
>>> numbers
[1, 2, 3, 'four', 5, 6, 7]

As with extend, you can implement insert with slice assignments:

>>> numbers = [1, 2, 3, 5, 6, 7]
>>> numbers[3:3] = ['four']
>>> numbers
[1, 2, 3, 'four', 5, 6, 7]

This may be fancy, but it is hardly as readable as using insert.

pop

The pop method removes an element (by default the last one) from the list and returns it:

>>> x = [1, 2, 3]
>>> x.pop()
3
>>> x
[1, 2]
>>> x.pop(0)
1
>>> x
[2]

■Note The pop method is the only list method that both modifies the list and returns a value (other
than None).

Using pop, you can implement a common data structure called a stack. A stack like this
works just like a stack of plates. You can put plates on top, and you can remove plates from the
top. The last one you put into the stack is the first one to be removed. (This principle is called
Last-In, First-Out, or LIFO.)

46 C H A P T E R 2 ■ L I S T S A N D T U P L E S

The generally accepted names for the two stack operations (putting things in and taking
them out) are push and pop. Python doesn’t have push, but you can use append instead. The pop
and append methods reverse each other’s results, so if you push (or append) the value you just
popped, you end up with the same stack:

>>> x = [1, 2, 3]
>>> x.append(x.pop())
>>> x
[1, 2, 3]

■Tip If you want a First-In, First-Out (FIFO) queue, you can use insert(0, ...) instead of append. Alter-
natively, you could keep using append but substitute pop(0) for pop(). An even better solution would be to
use a deque from the collections module. See Chapter 10 for more information.

remove

The remove method is used to remove the first occurrence of a value:

>>> x = ['to', 'be', 'or', 'not', 'to', 'be']
>>> x.remove('be')
>>> x
['to', 'or', 'not', 'to', 'be']
>>> x.remove('bee')
Traceback (innermost last):
 File "<pyshell#3>", line 1, in ?
 x.remove('bee')
ValueError: list.remove(x): x not in list

As you can see, only the first occurrence is removed, and you cannot remove something
(in this case, the string 'bee') if it isn’t in the list to begin with.

It’s important to note that this is one of the “nonreturning in-place changing” methods. It
modifies the list, but returns nothing (as opposed to pop).

reverse

The reverse method reverses the elements in the list. (Not very surprising, I guess.)

>>> x = [1, 2, 3]
>>> x.reverse()
>>> x
[3, 2, 1]

Note that reverse changes the list and does not return anything (just like remove and sort,
for example).

C H A P T E R 2 ■ L I S T S AN D T U P L E S 47

■Tip If you want to iterate over a sequence in reverse, you can use the reversed function. This function
doesn’t return a list, though; it returns an iterator. (You learn more about iterators in Chapter 9.) You can
convert the returned object with list, though:

>>> x = [1, 2, 3]
>>> list(reversed(x))
[3, 2, 1]

sort

The sort method is used to sort lists in place.3 Sorting “in place” means changing the original
list so its elements are in sorted order, rather than simply returning a sorted copy of the list:

>>> x = [4, 6, 2, 1, 7, 9]
>>> x.sort()
>>> x
[1, 2, 4, 6, 7, 9]

You’ve encountered several methods already that modify the list without returning anything,
and in most cases that behavior is quite natural (as with append, for example). But I want to
emphasize this behavior in the case of sort because so many people seem to be confused by it.
The confusion usually occurs when users want a sorted copy of a list while leaving the original
alone. An intuitive (but wrong) way of doing this is as follows:

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = x.sort() # Don't do this!
>>> print y
None

Because sort modifies x but returns nothing, you end up with a sorted x and a y containing
None. One correct way of doing this would be to first bind y to a copy of x, and then sort y,
as follows:

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = x[:]
>>> y.sort()
>>> x
[4, 6, 2, 1, 7, 9]
>>> y
[1, 2, 4, 6, 7, 9]

Recall that x[:] is a slice containing all the elements of x, effectively a copy of the entire
list. Simply assigning x to y wouldn’t work because both x and y would refer to the same list:

3. In case you’re interested: From Python 2.3 on, the sort method uses a stable sorting algorithm.

48 C H A P T E R 2 ■ L I S T S A N D T U P L E S

>>> y = x
>>> y.sort()
>>> x
[1, 2, 4, 6, 7, 9]
>>> y
[1, 2, 4, 6, 7, 9]

Another way of getting a sorted copy of a list is using the sorted function:

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = sorted(x)
>>> x
[4, 6, 2, 1, 7, 9]
>>> y
[1, 2, 4, 6, 7, 9]

This function can actually be used on any sequence, but will always return a list:4

>>> sorted('Python')
['P', 'h', 'n', 'o', 't', 'y']

If you want to sort the elements in reverse order, you can use sort (or sorted), followed by
a call to the reverse method, or you could use the reverse argument, described in the following
section.

Advanced Sorting

If you want to have your elements sorted in a specific manner (other than sort’s default
behavior, which is to sort elements in ascending order) you can define your own comparison
function, of the form compare(x,y), which returns a negative number when x < y, a positive
number when x > y, and zero when x == y (according to your definition). You can then supply
this as a parameter to sort. The built-in function cmp provides the default behavior:

>>> cmp(42, 32)
1
>>> cmp(99, 100)
-1
>>> cmp(10, 10)
0
>>> numbers = [5, 2, 9, 7]
>>> numbers.sort(cmp)
>>> numbers
[2, 5, 7, 9]

The sort method has two other optional arguments as well—key and reverse. If you want
to use them, you normally specify them by name (so-called keyword arguments; you learn
more about those in Chapter 6). The key argument is similar to the cmp argument: You supply

4. The sorted function can, in fact, be used on any other iterable object. You learn more about iterable
objects in Chapter 9.

C H A P T E R 2 ■ L I S T S AN D T U P L E S 49

a function and it’s used in the sorting process. However, instead of being used directly for
determining whether one element is smaller than another, the function is used to create a key
for each element, and the elements are sorted according to these keys. So, for example, if you
want to sort the elements according to their lengths, you use len as the key function:

>>> x = ['aardvark', 'abalone', 'acme', 'add', 'aerate']
>>> x.sort(key=len)
>>> x
['add', 'acme', 'aerate', 'abalone', 'aardvark']

The other keyword argument, reverse, is simply a truth value (True or False; you learn
more about these in Chapter 5) indicating whether the list should be sorted in reverse:

>>> x = [4, 6, 2, 1, 7, 9]
>>> x.sort(reverse=True)
>>> x
[9, 7, 6, 4, 2, 1]

The cmp, key, and reverse arguments are available in the sorted function as well. In many
cases, using custom functions for cmp or key will be useful—you learn how to define your own
functions in Chapter 6.

■Tip If you would like to read more about sorting, you may want to check out Andrew Dalke’s “Sorting
Mini-HOWTO,” found at http://python.org/doc/howto.

Tuples: Immutable Sequences
Tuples are sequences, just like lists. The only difference is that tuples can’t be changed.5 (As you
may have noticed, this is also true of strings.) The tuple syntax is simple—if you separate some
values with commas, you automatically have a tuple:

>>> 1, 2, 3
(1, 2, 3)

As you can see, tuples may also be (and often are) enclosed in parentheses:

>>> (1, 2, 3)
(1, 2, 3)

The empty tuple is written as two parentheses containing nothing:

>>> ()
()

5. There are some technical differences in the way tuples and lists work behind the scenes, but you probably
won’t notice it in any practical way. And tuples don’t have methods the way lists do. Don’t ask me why.

50 C H A P T E R 2 ■ L I S T S A N D T U P L E S

So, you may wonder how to write a tuple containing a single value. This is a bit peculiar—
you have to include a comma, even though there is only one value:

>>> 42
42
>>> 42,
(42,)
>>> (42,)
(42,)

The last two examples produce tuples of length one, while the first is not a tuple at all. The
comma is crucial. Simply adding parentheses won’t help: (42) is exactly the same as 42. One
lonely comma, however, can change the value of an expression completely:

>>> 3*(40+2)
126
>>> 3*(40+2,)
(42, 42, 42)

The tuple Function
The tuple function works in pretty much the same way as list: It takes one sequence argument
and converts it to a tuple.6 If the argument is already a tuple, it is returned unchanged:

>>> tuple([1, 2, 3])
(1, 2, 3)
>>> tuple('abc')
('a', 'b', 'c')
>>> tuple((1, 2, 3))
(1, 2, 3)

Basic Tuple Operations
As you may have gathered, tuples aren’t very complicated—and there isn’t really much you can
do with them except make them and access their elements, and you do this the same as with
other sequences:

>>> x = 1, 2, 3
>>> x[1]
2
>>> x[0:2]
(1, 2)

As you can see, slices of a tuple are also tuples, just as list slices are themselves lists.

6. And, as I remarked for list, tuple isn’t really a function—it’s a type. But, as for list, you can safely
ignore this for now.

C H A P T E R 2 ■ L I S T S AN D T U P L E S 51

So What’s the Point?
By now you are probably wondering why anyone would ever want such a thing as an immutable
(unchangeable) sequence. Can’t you just stick to lists and leave them alone when you don’t
want them to change? Basically, yes. However, there are two important reasons why you need
to know about tuples:

• They can be used as keys in mappings—lists can’t be. (You may remember that mappings
were mentioned in the chapter introduction. You’ll learn more about them in Chapter 4.)

• They are returned by some built-in functions and methods, which means that you have
to deal with them. As long as you don’t try to change them, “dealing” with them most
often means treating them just like lists (unless you need methods such as index and
count, which tuples don’t have).

In general, lists will probably be adequate for all your sequencing needs.

A Quick Summary
Let’s review some of the most important concepts covered in this chapter:

Sequences. A sequence is a data structure in which the elements are numbered (starting
with zero). Examples of sequence types are lists, strings, and tuples. Of these, lists are
mutable (you can change them), whereas tuples and strings are immutable (once they’re
created, they’re fixed). Parts of a sequence can be accessed through slicing, supplying two
indices, indicating the starting and ending position of the slice. To change a list, you assign
new values to its positions, or use assignment to overwrite entire slices.

Membership. Whether a value can be found in a sequence (or other container) is checked
with the operator in. Using in with strings is a special case—it will let you look for substrings.

Methods. Some of the built-in types (such as lists and strings, but not tuples) have many
useful methods attached to them. These are a bit like functions, except that they are tied
closely to a specific value. Methods are an important aspect of object-oriented program-
ming, which we look at later, in Chapter 7.

52 C H A P T E R 2 ■ L I S T S A N D T U P L E S

New Functions in This Chapter

What Now?
Now that you’re acquainted with sequences, let’s move on to character sequences, also known
as strings.

Function Description

cmp(x, y) Compares two values

len(seq) Returns the length of a sequence

list(seq) Converts a sequence to a list

max(args) Returns the maximum of a sequence or set of arguments

min(args) Returns the minimum of a sequence or set of arguments

reversed(seq) Lets you iterate over a sequence in reverse

sorted(seq) Returns a sorted list of the elements of seq

tuple(seq) Converts a sequence to a tuple

53

■ ■ ■

C H A P T E R 3

Working with Strings

You’ve seen strings before, and know how to make them. You’ve also looked at how to access
their individual characters by indexing and slicing. In this chapter, you see how to use them to
format other values (for printing, for example), and take a quick look at the useful things you
can do with string methods, such as splitting, joining, searching, and more.

Basic String Operations
All the standard sequence operations (indexing, slicing, multiplication, membership, length,
minimum, and maximum) work with strings, as you saw in the previous chapter. Remember,
however, that strings are immutable, so all kinds of item or slice assignments are illegal:

>>> website = 'http://www.python.org'
>>> website[-3:] = 'com'
Traceback (most recent call last):
 File "<pyshell#19>", line 1, in ?
 website[-3:] = 'com'
TypeError: object doesn't support slice assignment

String Formatting: The Short Version
If you are new to Python programming, chances are you won’t need all the options that are
available in Python string formatting, so I’ll give you the short version here. If you are interested in
the details, take a look at the section “String Formatting: The Long Version,” which follows.
Otherwise, just read this and skip down to the section “String Methods.”

String formatting is done with the string formatting operator, the percent (%) sign.

■Note As you may remember, % is also used as a modulus (remainder) operator.

To the left of it you place a string (the format string), and to the right of it you place the
value you want to format. You can either use a single value such as a string or a number, or you

54 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

can use a tuple of values (if you want to format more than one), or, as I discuss in the next chapter,
you can use a dictionary. The most common case is the tuple:

>>> format = "Hello, %s. %s enough for ya?"
>>> values = ('world', 'Hot')
>>> print format % values
Hello, world. Hot enough for ya?

■Note If you use a list or some other sequence instead of a tuple, the sequence will be interpreted as
a single value. Only tuples and dictionaries (discussed in Chapter 4) will allow you to format more than
one value.

The %s parts of the format string are called conversion specifiers. They mark the places
where the values are to be inserted. The s means that the values should be formatted as if they
were strings—if they aren’t, they’ll be converted with str. This works with most values; for a list
of other specifier types, see Table 3-1 later in the chapter.

■Note To actually include a percent sign in the format string, you must write %% so Python doesn’t mistake
it for the beginning of a conversion specifier.

If you are formatting real numbers (floats), you can use the f specifier type and supply the
precision as a . (dot) followed by the number of decimals you want to keep. The format specifier
always ends with a type character, so you must put the precision before that:

>>> format = "Pi with three decimals: %.3f"
>>> from math import pi
>>> print format % pi
Pi with three decimals: 3.142

TEMPLATE STRINGS

The string module offers another way of formatting values: template strings. They work more like variable
substitution in many UNIX shells, with $foo being replaced by a keyword argument called foo that is passed
to the template method substitute:1

>>> from string import Template
>>> s = Template('$x, glorious $x!')
>>> s.substitute(x='slurm')
'slurm, glorious slurm!'

1. For more about keyword arguments, see Chapter 6.

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 55

If the replacement field is part of a word, the name must be enclosed in braces, in order to make it clear where
it ends:

>>> s = Template("It's ${x}tastic!")
>>> s.substitute(x='slurm')
"It's slurmtastic!"

In order to insert a dollar sign, use $$:

>>> s = Template("Make $$ selling $x!")
>>> s.substitute(x='slurm')
'Make $ selling slurm!'

Instead of using keyword arguments, you can supply the value-name pairs in a dictionary (see Chapter 4):

>>> s = Template('A $thing must never $action.')
>>> d = {}
>>> d['thing'] = 'gentleman'
>>> d['action'] = 'show his socks'
>>> s.substitute(d)
'A gentleman must never show his socks.'

There is also a method called safe_substitute that will not complain about missing values or incorrect
uses of the $ character. See Section 4.1.2, “Template strings,” of the Python Library Reference (http://
python.org/doc/lib/node108.html).

String Formatting: The Long Version
The right operand of the formatting operator may be anything; if it is either a tuple or a mapping
(like a dictionary), it is given special treatment. We haven’t looked at mappings (such as
dictionaries) yet, so let’s focus on tuples here. We’ll use mappings in formatting in Chapter 4,
where they’re discussed in greater detail. If the right operand is a tuple, each of its elements is
formatted separately, and you need a conversion specifier for each of the values.

■Note If you write the tuple to be converted as part of the conversion expression, you must enclose it in
parentheses to avoid confusing Python:

>>> '%s plus %s equals %s' % (1, 1, 2)
'1 plus 1 equals 2'
>>> '%s plus %s equals %s' % 1, 1, 2 # Lacks parentheses!
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: not enough arguments for format string

56 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

In the material that follows, I walk you through the various parts of the conversion specifier.
For a summary, see the sidebar “Conversion Specifier Anatomy.”

CONVERSION SPECIFIER ANATOMY

A basic conversion specifier (as opposed to a full conversion specifier, which may contain a mapping key as
well; see Chapter 4 for more information) consists of the items that follow. Note here that the order is crucial.

• The % character. This marks the beginning of the conversion specifier.

• Conversion flags (optional). These may be either -, indicating left alignment; +, indicating that a sign
should precede the converted value; “ ” (a space character), indicating that a space should precede
positive numbers; or 0, indicating that the conversion should be zero-padded.

• The minimum field width (optional). The converted string will be at least this wide. If this is an *
(asterisk), the width will be read from the value tuple.

• A . (dot) followed by the precision (optional). If a real number is converted, this many decimals should
be shown. If a string is converted, this number is that maximum field width. If this is an * (asterisk), the
precision will be read from the value tuple.

• The conversion type (see Table 3-1).

Simple Conversion
The simple conversion, with only a conversion type, is really easy to use:

>>> 'Price of eggs: $%d' % 42
'Price of eggs: $42'
>>> 'Hexadecimal price of eggs: %x' % 42
'Hexadecimal price of eggs: 2a'
>>> from math import pi
>>> 'Pi: %f...' % pi
'Pi: 3.141593...'
>>> 'Very inexact estimate of pi: %i' % pi
'Very inexact estimate of pi: 3'
>>> 'Using str: %s' % 42L
'Using str: 42'
>>> 'Using repr: %r' % 42L
'Using repr: 42L'

For a list of all conversion types, see Table 3-1.

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 57

Width and Precision
A conversion specifier may include a field width and a precision. The width is the minimum
number of characters reserved for a formatted value, while the precision is (for a numeric
conversion) the number of decimals that will be included in the result, or (for a string conversion)
the maximum number of characters the formatted value may have.

These two parameters are supplied as two integer numbers (width first, then precision),
separated by a . (dot). Both are optional, but if you want to supply only the precision, you must
also include the dot:

>>> '%10f' % pi # Field width 10
' 3.141593'
>>> '%10.2f' % pi # Field width 10, precision 2
' 3.14'
>>> '%.2f' % pi # Precision 2
'3.14'
>>> '%.5s' % 'Guido van Rossum'
'Guido'

You can use an * (asterisk) as the width or precision (or both), in which case the number
will be read from the tuple argument:

>>> '%.*s' % (5, 'Guido van Rossum')
'Guido'

Table 3-1. String Formatting Conversion Types

Conversion Type Meaning

d, i Signed integer decimal

o Unsigned octal

u Unsigned decimal

x Unsigned hexadecimal (lowercase)

X Unsigned hexadecimal (uppercase)

e Floating point exponential format (lowercase)

E Floating point exponential format (uppercase)

f, F Floating point decimal format

g Same as e if exponent is greater than –4 or less than precision, f otherwise

G Same as E if exponent is greater than –4 or less than precision, F otherwise

c Single character (accepts integer or single character string)

r String (converts any Python object using repr)

58 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

Signs, Alignment, and Zero-Padding
Before the width and precision numbers, you may put a “flag,” which may be either zero, plus,
minus, or blank. A zero means that the number will be zero-padded:

>>> '%010.2f' % pi
'0000003.14'

It’s important to note here that the leading zero in 010 in the preceding code does not
mean that the width specifier is an octal number, as it would in a normal Python number.
When you use 010 as the width specifier, it means that the width should be 10 and that the
number should be zero-padded, not that the width should be 8:

>>> 010
8

A minus sign (-) left-aligns the value:

>>> '%-10.2f' % pi
'3.14 '

As you can see, any extra space is put on the right-hand side of the number.
A blank (“ ”) means that a blank should be put in front of positive numbers. This may be

useful for aligning positive and negative numbers:

>>> print ('% 5d' % 10) + '\n' + ('% 5d' % -10)
 10
 -10

Finally, a plus (+) means that a sign (either plus or minus) should precede both positive
and negative numbers (again, useful for aligning):

>>> print ('%+5d' % 10) + '\n' + ('%+5d' % -10)
 +10
 -10

In the following example, I use the asterisk width specifier to format a table of fruit prices,
where the user enters the total width of the table. Because this information is supplied by the
user, I can’t hard-code the field widths in my conversion specifiers; by using the asterisk, I can
have the field width read from the converted tuple. The source code is given in Listing 3-1.

Listing 3-1. String Formatting Example

Print a formatted price list with a given width

width = input('Please enter width: ')

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 59

price_width = 10
item_width = width - price_width

header_format = '%-*s%*s'
format = '%-*s%*.2f'

print '=' * width

print header_format % (item_width, 'Item', price_width, 'Price')

print '-' * width

print format % (item_width, 'Apples', price_width, 0.4)
print format % (item_width, 'Pears', price_width, 0.5)
print format % (item_width, 'Cantaloupes', price_width, 1.92)
print format % (item_width, 'Dried Apricots (16 oz.)', price_width, 8)
print format % (item_width, 'Prunes (4 lbs.)', price_width, 12)

print '=' * width

The following is a sample run of the program:

Please enter width: 35
===================================
Item Price
——————————————————————————————
Apples 0.40
Pears 0.50
Cantaloupes 1.92
Dried Apricots (16 oz.) 8.00
Prunes (4 lbs.) 12.00
===================================

String Methods
You have already encountered methods in lists. Strings have a much richer set of methods, in
part because strings have “inherited” many of their methods from the string module where
they resided as functions in earlier versions of Python (and where you may still find them, if
you feel the need).

60 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

BUT STRING ISN’T DEAD

Even though string methods have completely upstaged the string module, the module still includes a few
constants and functions that aren’t available as string methods. The maketrans function is one example and
will be discussed together with the translate method in the material that follows. Table 3-2 shows some
useful constants available from string. For a more thorough description of the module, check out Section 4.1
of the Python Library Reference (http://python.org/doc/lib/module-string.html).

Because there are so many string methods, only some of the most useful ones are described
here. For a full reference, see Appendix B. In the description of the string methods, you will find
references to other, related string methods in this chapter (marked “See also”) or in Appendix B.

find
The find method finds a substring within a larger string. It returns the leftmost index where the
substring is found. If it is not found, –1 is returned:

>>> 'With a moo-moo here, and a moo-moo there'.find('moo')
7
>>> title = "Monty Python's Flying Circus"
>>> title.find('Monty')
0
>>> title.find('Python')
6
>>> title.find('Flying')
15
>>> title.find('Zirquss')
-1

In our first encounter with membership in Chapter 2, we created part of a spam filter by
using the expression '$$$' in subject. We could also have used find (which would also have

Table 3-2. Useful Values from the string Module

Constant Description

string.digits A string containing the digits 0–9

string.letters A string containing all letters (upper- and lowercase)

string.lowercase A string containing all lowercase letters

string.printable A string containing all printable characters

string.punctuation A string containing all punctuation characters

string.uppercase A string containing all uppercase letters

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 61

worked prior to Python 2.3, when in could only be used when checking for single character
membership in strings):

>>> subject = '$$$ Get rich now!!! $$$'
>>> subject.find('$$$')
0

■Note The string method find does not return a Boolean value. If find returns 0, as it did here, it means
that it has found the substring, at index zero.

You may also supply a starting point for your search and, optionally, also an ending point:

>>> subject = '$$$ Get rich now!!! $$$'
>>> subject.find('$$$')
0
>>> subject.find('$$$', 1) # Only supplying the start
20
>>> subject.find('!!!')
16
>>> subject.find('!!!', 0, 16) # Supplying start and end
-1

Note that the range specified by the start and stop values (second and third parameter)
includes the first index but not the second. This is common practice in Python.

In Appendix B: rfind, index, rindex, count, startswith, endswith.

join
A very important string method, join is the inverse of split, and is used to join the elements of
a sequence:

>>> seq = [1, 2, 3, 4, 5]
>>> sep = '+'
>>> sep.join(seq) # Trying to join a list of numbers
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: sequence item 0: expected string, int found
>>> seq = ['1', '2', '3', '4', '5']
>>> sep.join(seq) # Joining a list of strings
'1+2+3+4+5'
>>> dirs = '', 'usr', 'bin', 'env'
>>> '/'.join(dirs)
'/usr/bin/env'
>>> print 'C:' + '\\'.join(dirs)
C:\usr\bin\env

62 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

As you can see, the sequence elements that are to be joined must all be strings. Note how
in the last two examples I make use of a list of directories and format them according to the
conventions of UNIX and DOS/Windows simply by using a different separator (and adding a
drive name in the DOS version).

See also: split.

lower
The lower method returns a lowercase version of the string:

>>> 'Trondheim Hammer Dance'.lower()
'trondheim hammer dance'

This can be useful if you want to write code that is “case-insensitive”—that is, code that
ignores the difference between uppercase and lowercase letters. For instance, you want to
check whether a user name is found in a list. If your list contains the string 'gumby' and the user
enters his name as 'Gumby', you won’t find it:

>>> if 'Gumby' in ['gumby', 'smith', 'jones']: print 'Found it!'
...
>>>

The same will of course happen if you have stored 'Gumby' and the user writes 'gumby',
or even 'GUMBY'. A solution to this is to convert all names to lowercase both when storing and
searching. The code would look something like this:

>>> name = 'Gumby'
>>> names = ['gumby', 'smith', 'jones']
>>> if name.lower() in names: print 'Found it!'
...
Found it!
>>>

See also: translate.
In Appendix B: islower, capitalize, swapcase, title, istitle, upper, isupper.

replace
The replace method returns a string where all the occurrences of one string have been replaced
by another:

>>> 'This is a test'.replace('is', 'eez')
'Theez eez a test'

If you have ever used the “search and replace” feature of a word processing program, you
will no doubt see the usefulness of this method.

See also: translate.
In Appendix B: expandtabs.

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 63

split
A very important string method, split is the inverse of join, and is used to split a string into
a sequence:

>>> '1+2+3+4+5'.split('+')
['1', '2', '3', '4', '5']
>>> '/usr/bin/env'.split('/')
['', 'usr', 'bin', 'env']
>>> 'Using the default'.split()
['Using', 'the', 'default']

Note that if no separator is supplied, the default is to split on all runs of consecutive
whitespace characters (spaces, tabs, newlines, and so on).

See also: join.
In Appendix B: rsplit, splitlines.

strip
The strip method returns a string where whitespace on the left and right (but not internally)
has been stripped (removed):

>>> ' internal whitespace is kept '.strip()
'internal whitespace is kept'

As with lower, strip can be useful when comparing input to stored values. Let’s return to
the user name example from the section on lower, and let’s say that the user inadvertently
types a space after his name:

>>> names = ['gumby', 'smith', 'jones']
>>> name = 'gumby '
>>> if name in names: print 'Found it!'
...
>>> if name.strip() in names: print 'Found it!'
...
Found it!
>>>

You can also specify which characters are to be stripped, by listing them all in a string
parameter:

>>> '*** SPAM * for * everyone!!! ***'.strip(' *!')
'SPAM * for * everyone'

Stripping is only performed at the ends, so the internal asterisks are not removed.
In Appendix B: lstrip, rstrip.

64 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

translate
Similar to replace, translate replaces parts of a string, but unlike replace, translate only works
with single characters. Its strength lies in that it can perform several replacements simultaneously,
and can do so more efficiently than replace.

There are quite a few rather technical uses for this method (such as translating newline
characters or other platform-dependent special characters), but let’s consider a simpler
(although slightly more silly) example. Let’s say you want to translate a plain English text into
one with a German accent. To do this, you must replace the character “c” with “k,” and “s” with “z.”

Before you can use translate, however, you must make a translation table. This translation
table is a full listing of which characters should be replaced by which. Because this table (which is
actually just a string) has 256 entries, you won’t write it out yourself: You’ll use the function
maketrans from the string module.

The maketrans function takes two arguments: two strings of equal length, indicating that
each character in the first string should be replaced by the character in the same position in the
second string. Got that? In the case of our simple example, the code would look like the following:

>>> from string import maketrans
>>> table = maketrans('cs', 'kz')

WHAT’S IN A TRANSLATION TABLE?

A translation table is a string containing one replacement letter for each of the 256 characters in the ASCII
character set:

>>> table = maketrans('cs', 'kz')
>>> len(table)
256
>>> table[97:123]
'abkdefghijklmnopqrztuvwxyz'
>>> maketrans('', '')[97:123]
'abcdefghijklmnopqrstuvwxyz'

As you can see, I’ve sliced out the part of the table that corresponds to the lowercase letters. Take a look
at the alphabet in the table and that in the empty translation (which doesn’t change anything). The empty
translation has a normal alphabet, while in the preceding code, the letter “c” has been replaced by “k,” and
“s” has been replaced by “z.”

Once you have this table, you can use it as an argument to the translate method, thereby
translating your string:

>>> 'this is an incredible test'.translate(table)
'thiz iz an inkredible tezt'

C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S 65

An optional second argument can be supplied to translate, specifying letters that should
be deleted. If you wanted to emulate a really fast-talking German, for instance, you could
delete all the spaces:

>>> 'this is an incredible test'.translate(table, ' ')
'thizizaninkredibletezt'

■Tip Sometimes string methods such as lower won’t work quite the way you want them to—for instance,
if you happen to use a non-English alphabet. Let’s say you want to convert the uppercase Norwegian word
“BØLLEFRØ” to its lowercase equivalent:

>>> print 'BØLLEFRØ'.lower()
bØllefrØ

As you can see, this didn’t really work because Python doesn’t consider “Ø” a real letter. In this case, you can
use translate to do the translation:

>>> table = maketrans('ÆØÅ', 'æøå')
>>> word = 'KÅPESØM'
>>> print word.lower()
kÅpesØm
>>> print word.translate(table)
KåPESøM
>>> print word.translate(table).lower()
kåpesøm

See also: replace, lower.

A Quick Summary
In this chapter, you have seen two important ways of working with strings:

String formatting. The modulo operator (%) can be used to splice values into a string that
contains conversion flags, such as %s. You can use this to format values in many ways,
including right or left justification, setting a specific field width and precision, adding a
sign (plus or minus), or left-padding with zeros.

String methods. Strings have a plethora of methods. Some of them are extremely useful
(such as split and join), while others are used less often (such as istitle or capitalize).

66 C H A P T E R 3 ■ W O R K I N G W I T H S T R I N G S

New Functions in This Chapter

What Now?
Lists, strings, and dictionaries are three of the most important data types in Python. You’ve
seen lists and strings, so guess what’s next? In the next chapter, you see how dictionaries not
only support indices, but other kinds of keys (such as strings or tuples) as well. Dictionaries
also support a few methods, although not as many as strings.

Function Description

string.maketrans(from, to) Makes a translation table for translate

67

■ ■ ■

C H A P T E R 4

Dictionaries: When Indices
Won’t Do

You’ve seen that lists are useful when you want to group values into a structure and refer to
each value by number. In this chapter, you learn about a data structure in which you can refer
to each value by name. This type of structure is called a mapping, and the only built-in mapping
type in Python is the dictionary. The values in a dictionary don’t have any particular order but
are stored under a key, which may be either a number, a string, or even a tuple.

But What Are They For?
There are many situations where a dictionary is more appropriate than a list. The name
“dictionary” should give you a clue: an ordinary book is made for reading from start to finish.
If you like, you can quickly open it to any given page. This is a bit like a Python list. Dictionaries,
however (both real ones and their Python equivalent) are constructed so that you can look up
a specific word (key) easily, to find its definition (value). Some arbitrary uses of Python dictio-
naries are as follows:

• Representing the state of a gaming board, with each key being a tuple of coordinates

• Storing file modification times, with file names as keys

• A digital telephone/address book

Let’s say you have a list of people:

>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl']

What if you wanted to create a little database where you could store the telephone numbers of
these people—how would you do that? One way would be to make another list. Let’s say you’re
only storing their four-digit extensions. Then you would get something like this:

>>> numbers = ['2341', '9102', '3158', '0142', '5551']

68 C H A P T E R 4 ■ D I CT I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

■Note You might wonder why I have used strings to represent the telephone numbers—why not integers?
Consider what would happen to Dee-Dee’s number then:

>>> 0142
98

Not exactly what we wanted, is it? As mentioned briefly in Chapter 1, octal numbers are written with an initial
zero. It is impossible to write decimal numbers like that.

>>> 0912
 File "<stdin>", line 1
 0912
 ^
SyntaxError: invalid syntax

The lesson is this: Telephone numbers (and other numbers that may contain leading zeros) should be repre-
sented as strings of digits—not integers.

Once you’ve created these lists, you can look up Cecil’s telephone number as follows:

>>> numbers[names.index('Cecil')]
3158

It works, but it’s a bit impractical. What you really would want to do is something like the
following:

>>> phonebook['Cecil']
3158

Guess what? If phonebook is a dictionary, you can do just that.

Dictionary Syntax
Dictionaries are written like this:

phonebook = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'}

Dictionaries consist of pairs (called items) of keys and their corresponding values. In the
preceding example, the names are the keys and the telephone numbers are the values. Each
key is separated from its value by a colon (:), the items are separated by commas, and the
whole thing is enclosed in curly braces. An empty dictionary (without any items) is written with
just two curly braces, like this: {}.

■Note Keys are unique within a dictionary (and any other kind of mapping), while values may not be.

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 69

The dict Function
You can use the dict function to construct dictionaries from other mappings (for example,
other dictionaries) or from sequences of (key, value) pairs:

>>> items = [('name', 'Gumby'), ('age', 42)]
>>> d = dict(items)
>>> d
{'age': 42, 'name': 'Gumby'}
>>> d['name']
'Gumby'

It can also be used with keyword arguments, as follows:

>>> d = dict(name='Gumby', age=42)
>>> d
{'age': 42, 'name': 'Gumby'}

Although this is probably the most useful application of dict, you can also use it with a
mapping argument to create a dictionary with the same items as the mapping. (If used without
any arguments, it returns a new empty dictionary, just like other similar functions such as list,
tuple, or str.) If the other mapping is a dictionary (which is, after all, the only built-in mapping
type), you can use the dictionary method copy instead, as described later.

■Note The dict function isn’t really a function at all. It is a type, just like list, tuple, and str.

Basic Dictionary Operations
The basic behavior of a dictionary in many ways mirrors that of a sequence: len(d) returns the
number of items (key-value pairs) in d, d[k] returns the value associated with the key k, d[k] = v
associates the value v with the key k, del d[k] deletes the item with key k, and k in d checks
whether there is an item in d that has the key k. Although they share several common character-
istics, there are some important distinctions:

• Dictionary keys don’t have to be integers (though they may be). They may be any immu-
table type, such as floating-point (real) numbers, strings, or tuples.

• You can assign a value to a key even if that key isn’t in the dictionary to begin with; a new
item will be created. You cannot assign a value to an index outside the list’s range
(without using append or something like that).

70 C H A P T E R 4 ■ D I CT I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

• The expression k in d (where d is a dictionary) looks for a key, not a value. The expression
v in l, on the other hand (where l is a list) looks for a value, not an index. This may seem
a bit inconsistent, but it is actually quite natural when you get used to it. After all, if the
dictionary has the given key, checking the corresponding value is easy.

■Tip Checking for key membership in a dictionary is much more efficient than checking for membership in
a list—and the difference is greater the larger the data structures are.

The first point—that the keys may be of any immutable type—is the main strength of
dictionaries, while the second point is important, too. Just look at the difference here:

>>> x = []
>>> x[42] = 'Foobar'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: list assignment index out of range
>>> x = {}
>>> x[42] = 'Foobar'
>>> x
{42: 'Foobar'}

First, I try to assign the string 'Foobar' to position 42 in an empty list—clearly impossible
because that position does not exist. To make this possible, I would have to initialize x with
[None]*43 or something, rather than simply []. The next attempt, however, works perfectly.
Here I assign 'Foobar' to the key 42 of an empty dictionary; no problem! A new item is simply
added to the dictionary and I’m in business.

Example

Listing 4-1 shows the code for the telephone book example. Here is a sample run of the program:

Name: Beth
Phone number (p) or address (a)? p
Beth's phone number is 9102.

Listing 4-1. Dictionary Example

A simple database

A dictionary with person names as keys. Each person is represented as
another dictionary with the keys 'phone' and 'addr' referring to their phone
number and address, respectively.

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 71

people = {

 'Alice': {
 'phone': '2341',
 'addr': 'Foo drive 23'
 },

 'Beth': {
 'phone': '9102',
 'addr': 'Bar street 42'
 },

 'Cecil': {
 'phone': '3158',
 'addr': 'Baz avenue 90'
 }

}

Descriptive labels for the phone number and address. These will be used
when printing the output.
labels = {
 'phone': 'phone number',
 'addr': 'address'
}

name = raw_input('Name: ')

Are we looking for a phone number or an address?
request = raw_input('Phone number (p) or address (a)? ')

Use the correct key:
if request == 'p': key = 'phone'
if request == 'a': key = 'addr'

Only try to print information if the name is a valid key in our dictionary:
if name in people: print "%s's %s is %s." % (name, labels[key], people[name][key])

String Formatting with Dictionaries
In Chapter 3, you saw how you could use string formatting to format all the values in a tuple.
If you use a dictionary (with only strings as keys) instead of a tuple, you can make the string
formatting even snazzier. After the % character in each conversion specifier, you add a key
(enclosed in parentheses), which is followed by the other specifier elements:

72 C H A P T E R 4 ■ D I CT I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

>>> phonebook
{'Beth': '9102', 'Alice': '2341', 'Cecil': '3258'}
>>> "Cecil's phone number is %(Cecil)s." % phonebook
"Cecil's phone number is 3258."

Except for the added string key, the conversion specifiers work as before. When using
dictionaries like this, you may have any number of conversion specifiers, as long as all the
given keys are found in the dictionary. This sort of string formatting can be very useful in
template systems (in this case using HTML):

>>> template = '''<html>
 <head><title>%(title)s</title></head>
 <body>
 <h1>%(title)s</h1>
 <p>%(text)s</p>
 </body>'''
>>> data = {'title': 'My Home Page', 'text': 'Welcome to my home page!'}
>>> print template % data
<html>
<head><title>My Home Page</title></head>
<body>
<h1>My Home Page</h1>
<p>Welcome to my home page!</p>
</body>

■Note The string.Template class (mentioned in Chapter 3) is also quite useful for this kind of application.

Dictionary Methods
Just like the other built-in types, dictionaries have methods. While these methods can be very
useful, you probably will not need them as often as the list and string methods. You might want
to skim this section first to get a picture of which methods are available, and then come back
later if you need to find out exactly how a given method works.

clear
The clear method removes all items from the dictionary. This is an in-place operation (like
list.sort), so it returns nothing (or, rather, None):

>>> d = {}
>>> d['name'] = 'Gumby'
>>> d['age'] = 42
>>> d
{'age': 42, 'name': 'Gumby'}

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 73

>>> returned_value = d.clear()
>>> d
{}
>>> print returned_value
None

Why is this useful? Consider the following scenarios, and notice the difference in behavior.
Scenario 1:

>>> x = {}
>>> y = x
>>> x['key'] = 'value'
>>> y
{'key': 'value'}
>>> x = {}
>>> y
{'key': 'value'}

Scenario 2:

>>> x = {}
>>> y = x
>>> x['key'] = 'value'
>>> y
{'key': 'value'}
>>> x.clear()
>>> y
{}

In both scenarios, x and y originally refer to the same dictionary. In the first scenario, I
“blank out” x by assigning a new, empty dictionary to it. That doesn’t affect y at all, which still
refers to the original dictionary. This may be the behavior you want, but if you really want to
remove all the elements of the original dictionary, you must use clear. As you can see in the
second scenario, y is then also empty afterward.

copy
The copy method returns a new dictionary with the same key-value pairs (a shallow copy, since
the values themselves are the same, not copies):

>>> x = {'username': 'admin', 'machines': ['foo', 'bar', 'baz']}
>>> y = x.copy()
>>> y['username'] = 'mlh'
>>> y['machines'].remove('bar')
>>> y
{'username': 'mlh', 'machines': ['foo', 'baz']}
>>> x
{'username': 'admin', 'machines': ['foo', 'baz']}

74 C H A P T E R 4 ■ D I CT I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

As you can see, when you replace a value in the copy, the original is unaffected. However,
if you modify a value (in place, without replacing it), the original is changed as well because the
same value is stored there (like the “machines” list in this example).

■Tip One way to avoid that problem is to make a deep copy, copying the values, any values they contain,
and so forth as well. You accomplish this using the function deepcopy from the copy module:

>>> from copy import deepcopy
>>> d = {}
>>> d['names'] = ['Alfred', 'Bertrand']
>>> c = d.copy()
>>> dc = deepcopy(d)
>>> d['names'].append('Clive')
>>> c
{'names': ['Alfred', 'Bertrand', 'Clive']}
>>> dc
{'names': ['Alfred', 'Bertrand']}

fromkeys
The fromkeys method creates a new dictionary with the given keys, each with a default corre-
sponding value of None:

>>> {}.fromkeys(['name', 'age'])
{'age': None, 'name': None}

The previous example first constructs an empty dictionary and then calls the fromkeys
method on that, in order to create another dictionary—a somewhat redundant strategy. Instead,
you can call the method directly on dict, which (as mentioned before) is the type of all dictio-
naries. (The concept of types and classes is discussed more thoroughly in Chapter 7.)

>>> dict.fromkeys(['name', 'age'])
{'age': None, 'name': None}

If you don’t want to use None as the default value, you can supply your own default:

>>> dict.fromkeys(['name', 'age'], '(unknown)')
{'age': '(unknown)', 'name': '(unknown)'}

get
The get method is a forgiving way of accessing dictionary items. Ordinarily, when you try to
access an item that is not present in the dictionary, things go very wrong:

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 75

>>> d = {}
>>> print d['name']
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
KeyError: 'name'

Not so with get:

>>> print d.get('name')
None

As you can see, when you use get to access a nonexistent key, there is no exception. Instead,
you get the value None. You may supply your own “default” value, which is then used instead
of None:

>>> d.get('name', 'N/A')
'N/A'

If the key is there, get works like ordinary dictionary lookup:

>>> d['name'] = 'Eric'
>>> d.get('name')
'Eric'

has_key
The has_key method checks whether a dictionary has a given key. The expression d.has_key(k)
is equivalent to k in d. The choice of which to use is largely a matter of taste.

Here is an example of how you might use has_key:

>>> d = {}
>>> d.has_key('name')
0
>>> d['name'] = 'Eric'
>>> d.has_key('name')
1

items and iteritems
The items method returns all the items of the dictionary as a list of items in which each item is
of the form (key, value). The items are not returned in any particular order:

>>> d = {'title': 'Python Web Site', 'url': 'http://www.python.org', 'spam': 0}
>>> d.items()
[('url', 'http://www.python.org'), ('spam', 0), ('title', 'Python Web Site')]

The iteritems method works in much the same way, but returns an iterator instead of a list:

76 C H A P T E R 4 ■ D I CT I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

>>> it = d.iteritems()
>>> it
<dictionary-iterator object at 169050>
>>> list(it) # Convert the iterator to a list
[('url', 'http://www.python.org'), ('spam', 0), ('title', 'Python Web Site')]

Using iteritems may be more efficient in many cases (especially if you want to iterate over
the result). For more information on iterators, see Chapter 9.

keys and iterkeys
The keys method returns a list of the keys in the dictionary, while iterkeys returns an iterator
over the keys.

pop
The pop method can be used to get the value corresponding to a given key, and then remove the
key-value pair from the dictionary:

>>> d = {'x': 1, 'y': 2}
>>> d.pop('x')
1
>>> d
{'y': 2}

popitem
The popitem method is similar to list.pop. Unlike list.pop, however, popitem pops off a random
item because dictionaries don’t have a “last element” or any order whatsoever. This may be
very useful if you want to remove and process the items one by one in an efficient way (without
retrieving a list of the keys first):

>>> d
{'url': 'http://www.python.org', 'spam': 0, 'title': 'Python Web Site'}
>>> d.popitem()
('url', 'http://www.python.org')
>>> d
{'spam': 0, 'title': 'Python Web Site'}

Although popitem is similar to the list method pop, there is no dictionary equivalent of
append. Because dictionaries have no order, such a method wouldn’t make any sense.

setdefault
The setdefault method is somewhat similar to get, except that in addition to the get function-
ality, setdefault sets the value corresponding to the given key if it is not already in the dictionary:

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 77

>>> d = {}
>>> d.setdefault('name', 'N/A')
'N/A'
>>> d
{'name': 'N/A'}
>>> d['name'] = 'Gumby'
>>> d.setdefault('name', 'N/A')
'Gumby'
>>> d
{'name': 'Gumby'}

As you can see, when the key is missing, setdefault returns the default and updates the
dictionary accordingly. If the key is present, its value is returned and the dictionary is left
unchanged. The default is optional, as with get; if it is left out, None is used:

>>> d = {}
>>> print d.setdefault('name')
None
>>> d
{'name': None}

update
The update method updates one dictionary with the items of another:

>>> d = {
 'title': 'Python Web Site',
 'url': 'http://www.python.org',
 'changed': 'Mar 14 22:09:15 MET 2005'
 }
>>> x = {'title': 'Python Language Website'}
>>> d.update(x)
>>> d
{'url': 'http://www.python.org', 'changed': 'Mar 14 22:09:15 MET 2005',
'title': 'Python Language Website'}

The items in the supplied dictionary are added to the old one, overwriting any items there
with the same keys.

The update method can be called in the same way as the dict function (or type constructor),
as discussed earlier in this chapter. This means that update can be called with a mapping, a
sequence (or other iterable object) of (key, value) pairs, or with keyword arguments.

values and itervalues
The values method returns a list of the values in the dictionary (and itervalues returns an iterator
of the values). Unlike keys, the list returned by values may contain duplicates:

78 C H A P T E R 4 ■ D I CT I O N A R I E S : W H E N I N D I C E S W O N ’ T D O

>>> d = {}
>>> d[1] = 1
>>> d[2] = 2
>>> d[3] = 3
>>> d[4] = 1
>>> d.values()
[1, 2, 3, 1]

Our Example Revisited

Listing 4-2 shows a modified version of the program from Listing 4-1, which uses the get method to access the
“database” entries. An example run of this program follows. Notice how the added flexibility of get allows the
program to give a useful response even though the user enters values we weren’t prepared for:

Name: Gumby
Phone number (p) or address (a)? batting average
Gumby's batting average is not available.

Listing 4-2. Dictionary Method Example

A simple database using get()

Insert database (people) from Listing 4-1 here.

labels = {
 'phone': 'phone number',
 'addr': 'address'
}

name = raw_input('Name: ')

Are we looking for a phone number or an address?
request = raw_input('Phone number (p) or address (a)? ')

Use the correct key:
key = request # In case the request is neither 'p' nor 'a'
if request == 'p': key = 'phone'
if request == 'a': key = 'addr'

Use get to provide default values:
person = people.get(name, {})
label = labels.get(key, key)
result = person.get(key, 'not available')

print "%s's %s is %s." % (name, label, result)

C H A P T E R 4 ■ D I C T I O N A R I E S : W H E N I N D I C E S W O N ’ T D O 79

A Quick Summary
In this chapter, you learned about the following:

Mappings. A mapping enables you to label its elements with any immutable object, the
most usual types being strings and tuples. The only built-in mapping type in Python is the
dictionary.

String formatting with dictionaries. You can apply the string formatting operation to
dictionaries by including names (keys) in the formatting specifiers. When using tuples in
string formatting, you need to have one formatting specifier for each element in the tuple.
When using dictionaries, you can have fewer specifiers than you have items in the dictionary.

Dictionary methods. Dictionaries have quite a few methods, which are called in the same
way as list and string methods.

New Functions in This Chapter

What Now?
You now know a lot about Python’s basic data types and how to use them to form expressions.
As you may remember from Chapter 1, computer programs have another important ingre-
dient—statements. They’re covered in detail in the next chapter.

Function Description

dict(seq) Creates dictionary from (key, value) pairs

81

■ ■ ■

C H A P T E R 5

Conditionals, Loops, and Some
Other Statements

By now, I’m sure you are getting a bit impatient. All right—all these data types are just dandy,
but you can’t really do much with them, can you?

Let’s crank up the pace a bit. You’ve already encountered a couple of statement types
(print statements, import statements, assignments). Let’s first take a look at some more ways
of using these before diving into the world of conditionals and loops. Then, you’ll see how list
comprehensions work almost like conditionals and loops, even though they are expressions,
and finally you’ll take a look at pass, del, and exec.

More About print and import
As you learn more about Python, you may notice that some aspects of Python that you thought
you knew have hidden features just waiting to pleasantly surprise you. Let’s take a look at a
couple of such nice features in print and import.

Printing with Commas
You’ve seen how print can be used to print an expression, which is either a string or is auto-
matically converted to one. But you can actually print more than one expression, as long as you
separate them with commas:

>>> print 'Age:', 42
Age: 42

As you can see, a space character is inserted between each argument.

82 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

■Note The arguments of print do not form a tuple, as one might expect:

>>> 1, 2, 3
(1, 2, 3)
>>> print 1, 2, 3
1 2 3
>>> print (1, 2, 3)
(1, 2, 3)

This behavior can be very useful if you want to combine text and variable values without
using the full power of string formatting:

>>> name = 'Gumby'
>>> salutation = 'Mr.'
>>> greeting = 'Hello,'
>>> print greeting, salutation, name
Hello, Mr. Gumby

■Note If the greeting string had no comma, how would you get the comma in the result? You couldn’t
just use

print greeting, ',', salutation, name

because that would introduce a space before the comma. One solution would be the following:

print greeting + ',', salutation, name

Here the comma is simply added to the greeting.

If you add a comma at the end, your next print statement will continue printing on the
same line. For example, the statements

print 'Hello,',
print 'world!'

print out Hello, world!

Importing Something As Something Else
Usually when you import something from a module you either use

import somemodule

or

from somemodule import somefunction

or

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 83

from somemodule import *

The latter should only be used when you are certain that you want to import everything
from the given module. But what if you have two modules each containing a function called
open, for example—what do you do then? You could simply import the modules using the first
form, and then use the functions as follows:

module1.open(...)
module2.open(...)

But there is another option: You can add an as clause to the end and supply the name you
want to use, either for the entire module:

>>> import math as foobar
>>> foobar.sqrt(4)
2.0

or for the given function:

>>> from math import sqrt as foobar
>>> foobar(4)
2.0

For the open functions you might use the following:

from module1 import open as open1
from module2 import open as open2

Assignment Magic
The humble assignment statement also has a few tricks up its sleeve.

Sequence Unpacking
You’ve seen quite a few examples of assignments, both for variables and for parts of data structures
(such as positions and slices in a list, or slots in a dictionary), but there is more. You can perform
several different assignments simultaneously:

>>> x, y, z = 1, 2, 3
>>> print x, y, z
1 2 3

Doesn’t sound useful? Well, you can use it to switch the contents of two (or more)
variables:

>>> x, y = y, x
>>> print x, y, z
2 1 3

Actually, what I’m doing here is called “sequence unpacking”—I have a sequence of values,
and I unpack it into a sequence of variables. Let me be more explicit:

84 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

>>> values = 1, 2, 3
>>> values
(1, 2, 3)
>>> x, y, z = values
>>> x
1

This is particularly useful when a function or method returns a tuple (or other sequence or
iterable object); let’s say that you want to retrieve (and remove) an arbitrary key-value pair
from a dictionary. You can then use the popitem method, which does just that, returning the
pair as a tuple. Then you can unpack the returned tuple directly into two variables:

>>> scoundrel = {'name': 'Robin', 'girlfriend': 'Marion'}
>>> key, value = scoundrel.popitem()
>>> key
'girlfriend'
>>> value
'Marion'

This allows functions to return more than one value, packed as a tuple, easily accessible
through a single assignment. The sequence you unpack must have exactly as many items as the
targets you list on the left of the = sign; otherwise Python raises an exception when the assignment
is performed.

Chained Assignments
Chained assignments are used as a shortcut when you want to bind several variables to the
same value. This may seem a bit like the simultaneous assignments in the previous section,
except that here you are only dealing with one value:

x = y = somefunction()

which is the same as

y = somefunction()
x = y

Note that the preceding statements may not be the same as

x = somefunction()
y = somefunction()

For more information, see the section about the identity operator (is), later in this chapter.

Augmented Assignments
Instead of writing x = x + 1, you can just put the expression operator (in this case +) before the
assignment operator (=) and write x += 1. This is called an augmented assignment, and it works
with all the standard operators, such as *, /, %, and so on:

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 85

>>> x = 2
>>> x += 1
>>> x *= 2
>>> x
6

It also works with other data types:

>>> fnord = 'foo'
>>> fnord += 'bar'
>>> fnord
'foobar'

Augmented assignments can make your code more compact and concise, and in many
cases, more readable.

■Tip In general, you should not use += with strings, especially if you are building a large string piece by
piece in a loop (see the section “Loops” later in this chapter for more information about loops). Each addition
and assignment needs to create a new string, and that takes time, making your program slower. A much
better approach is to append the small strings to a list, and use the string method join to create the big string
when your list is finished.

Blocks: The Joy of Indentation
This isn’t really a type of statement but something you’re going to need when you tackle the
next two sections.

A block is a group of statements that can be executed if a condition is true (conditional
statements), or executed several times (loops), and so on. A block is created by indenting a part
of your code; that is, putting spaces in front of it.

■Note You can use tab characters to indent your blocks as well. Python interprets a tab as moving to the
next tab stop, with one tab stop every eight spaces, but the standard and preferable style is to use spaces
only, no tabs, and specifically four spaces per each level of indentation.

Each line in a block must be indented by the same amount. The following is pseudocode
(not real Python code) but shows how the indenting works:

this is a line
this is another line:
 this is another block
 continuing the same block
 the last line of this block
phew, there we escaped the inner block

86 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

In many languages a special word or character (for example, begin or {) is used to start a
block, and another (such as end or }) is used to end it. In Python, a colon (:) is used to indicate
that a block is about to begin, and then every line in that block is indented (by the same amount).
When you go back to the same amount of indentation as some enclosing block, you know that
the current block has ended.

Now I’m sure you are curious to know how to use these blocks. So, without further ado,
let’s have a look.

Conditions and Conditional Statements
Until now you’ve only written programs in which each statement is executed, one after the
other. It’s time to move beyond that and let your program choose whether or not to execute a
block of statements.

So That’s What Those Boolean Values Are For
Now you are finally going to need those truth values (also called Boolean values, after George
Boole, who did a lot of smart stuff on truth values) that you’ve been bumping into repeatedly.

■Note If you’ve been paying close attention, you noticed the sidebar in Chapter 1, “Sneak Peek: The if
Statement,” which describes the if statement. I haven’t really introduced it formally until now, and as you’ll
see, there is a bit more to it than what I’ve told you so far.

The following values are considered by the interpreter to mean false:

False None 0 "" () [] {}

In other words, the standard values False and None, numeric zero of all types (including
float, long, and so on), empty sequences (such as empty strings, tuples, and lists), and empty
dictionaries are all false. Everything else is interpreted as true, including the special value True.
Laura Creighton describes this as discerning between something and nothing, rather than true
and false.

Got it? This means that every value in Python can be interpreted as a truth value, which
can be a bit confusing at first, but it can also be extremely useful. And even though you have all
these truth values to choose from, the “standard” truth values are True and False. In older
versions of Python, the standard truth values were 0 (for false) and 1 (for true). In fact, True and
False are just glorified versions of 0 and 1 that look different but act the same:

>>> True
True
>>> False
False
>>> True == 1
True

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 87

>>> False == 0
True
>>> True + False + 42
43

So now, if you see a logical expression returning 1 or 0 (probably in an older version of
Python), you will know that what is really meant is True and False.

The Boolean values True and False belong to the type bool, which can be used (just like, for
example, list, str, and tuple) to convert other values:

>>> bool('I think, therefore I am')
True
>>> bool(42)
True
>>> bool('')
False
>>> bool(0)
False

Because any value can be used as Boolean values, you will most likely rarely (if ever) need
such an explicit conversion.

Conditional Execution and the if Statement
Truth values can be combined (which you’ll see in a while), but let’s first see what you can use
them for. Try running the following script:

name = raw_input('What is your name? ')
if name.endswith('Gumby'):
 print 'Hello, Mr. Gumby'

This is the if statement, which lets you do conditional execution. That means that if the
condition (the expression after if but before the colon) evaluates to true (as defined previously),
the following block (in this case, a single print statement) is executed. If the condition is false,
then the block is not executed (but you guessed that, didn’t you?).

■Note In the sidebar “Sneak Peek: The if Statement” in Chapter 1, the statement was written on a single
line. That is equivalent to using a single-line block, as in the preceding example.

else Clauses
In the example from the previous section, if you enter a name that ends with “Gumby,” the
method name.endswith returns True, making the if statement enter the block, and the greeting
is printed. If you want, you can add an alternative, with the else clause (called a clause because
it isn’t really a separate statement, just a part of the if statement):

88 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

name = raw_input('What is your name? ')
if name.endswith('Gumby'):
 print 'Hello, Mr. Gumby'
else:
 print 'Hello, stranger'

Here, if the first block isn’t executed (because the condition evaluated to false), you enter
the second block instead. This really makes you see how easy it is to read Python code, doesn’t
it? Just read the code aloud (from if) and it sounds just like a normal (or perhaps not quite
normal) sentence.

elif Clauses
If you want to check for several conditions, you can use elif, which is short for “else if.” It is a
combination of an if clause and an else clause—an else clause with a condition:

num = input('Enter a number: ')
if num > 0:
 print 'The number is positive'
elif num < 0:
 print 'The number is negative'
else:
 print 'The number is zero'

Nesting Blocks
Let’s throw in a few bells and whistles. You can have if statements inside other if statement
blocks, as follows:

name = raw_input('What is your name? ')
if name.endswith('Gumby'):
 if name.startswith('Mr.'):
 print 'Hello, Mr. Gumby'
 elif name.startswith('Mrs.'):
 print 'Hello, Mrs. Gumby'
 else:
 print 'Hello, Gumby'
else:
 print 'Hello, stranger'

Here, if the name ends with “Gumby,” you check the start of the name as well—in a separate
if statement inside the first block. Note the use of elif here. The last alternative (the else clause)
has no condition—if no other alternative is chosen, you use the last one. If you want to, you can
leave out either of the else clauses. If you leave out the inner else clause, names that don’t start
with either “Mr.” or “Mrs.” are ignored (assuming the name was “Gumby”). If you drop the
outer else clause, strangers are ignored.

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 89

More Complex Conditions
That’s really all there is to know about if statements. Now let’s return to the conditions them-
selves, because they are the really interesting part of conditional execution.

Comparison Operators

Perhaps the most basic operators used in conditions are the comparison operators. They are
used (surprise, surprise) to compare things. The comparison operators are summed up in
Table 5-1.

If you stumble across the expression x <> y somewhere, this means x != y. The <> operator is
deprecated, however, and you should avoid using it. Comparisons can be chained in Python, just
like assignments—you can put several comparison operators in a chain, like this: 0 < age < 100.

■Tip When comparing things, you can also use the built-in function cmp as described in Chapter 2.

Some of these operators deserve some special attention and will be described in the
following sections.

The Equality Operator

If you want to know if two things are equal, you use the equality operator, written as a double
equality sign, ==:

Table 5-1. The Python Comparison Operators

Expression Description

x == y x equals y.

x < y x is less than y.

x > y x is greater than y.

x >= y x is greater than or equal to y.

x <= y x is less than or equal to y.

x != y x is not equal to y.

x is y x and y are the same object.

x is not y x and y are different objects.

x in y x is a member of the container (e.g., sequence) y.

x not in y x is not a member of the container (e.g., sequence) y.

90 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

>>> "foo" == "foo"
True
>>> "foo" == "bar"
False

Double? Why can’t you just use a single equality sign, like they do in mathematics? I’m sure
you’re clever enough to figure this out for yourself, but let’s try it:

>>> "foo" = "foo"
SyntaxError: can't assign to literal

The single equality sign is the assignment operator, which is used to change things, which
is not what you want to do when you compare things.

is: The Identity Operator

The is operator is interesting. It seems to work just like ==, but it doesn’t:

>>> x = y = [1, 2, 3]
>>> z = [1, 2, 3]
>>> x == y
True
>>> x == z
True
>>> x is y
True
>>> x is z
False

Until the last example, this looks fine, but then you get that strange result, that x is not z
even though they are equal. Why? Because is tests for identity, rather than equality. The variables x
and y have been bound to the same list, while z is simply bound to another list that happens to
contain the same values in the same order. They may be equal, but they aren’t the same object.

Does that seem unreasonable? Consider this example:

>>> x = [1, 2, 3]
>>> y = [2, 4]
>>> x is not y
True
>>> del x[2]
>>> y[1] = 1
>>> y.reverse()

In this example, I start with two different lists, x and y. As you can see, x is not y (just the
inverse of x is y), which you already know. I change the lists around a bit, and though they are
now equal, they are still two separate lists:

>>> x == y
True
>>> x is y
True

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 91

Here it is obvious that the two lists are equal but not identical.
To summarize: Use == to see if two objects are equal, and use is to see if they are identical

(the same object).

■Caution Avoid the use of is with basic, immutable values such as numbers and strings. The result is
unpredictable because of the way Python handles these objects internally.

in: The Membership Operator

I have already introduced the in operator (in Chapter 2, in the section “Membership”). It can
be used in conditions, just like all the other comparison operators:

name = raw_input('What is your name? ')
if 's' in name:
 print 'Your name contains the letter "s".'
else:
 print 'Your name does not contain the letter "s".'

Comparing Strings and Sequences

Strings are compared according to their order when sorted alphabetically:

>>> "alpha" < "beta"
True

If you throw in capital letters, things get a bit messy. (Actually, characters are sorted by
their ordinal values. The ordinal value of a letter can be found with the ord function, whose
inverse is chr.) To ignore the difference between uppercase and lowercase letters, use the
string methods upper or lower:

>>> 'FnOrD'.lower() == 'Fnord'.lower()
True

Other sequences are compared in the same manner, except that instead of characters you
may have other types of elements:

>>> [1, 2] < [2, 1]
True

If the sequences contain other sequences as elements, the same rule applies to these
sequence elements:

>>> [2, [1, 4]] < [2, [1, 5]]
True

Boolean Operators

Now, you’ve got plenty of things that return truth values. (In fact, given the fact that all values
can be interpreted as truth values, all expressions return them.) But you may want to check for

92 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

more than one condition. For example, let’s say you want to write a program that reads a number
and checks whether it’s between 1 and 10 (inclusive). You can do it like this:

number = input('Enter a number between 1 and 10: ')
if number <= 10:
 if number >= 1:
 print 'Great!'
 else:
 print 'Wrong!'
else:
 print 'Wrong!'

This will work, but it’s clumsy. The fact that you have to write print 'Wrong!' in two places
should alert you to this clumsiness. Duplication of effort is not a good thing. So what do you do?
It’s so simple:

if number <= 10 and number >= 1:
 print 'Great!'
else:
 print 'Wrong!'

■Note In this example, you could (and quite probably should) have made this even simpler by using the
following chained comparison:

1 <= number <= 10

The and operator is a so-called Boolean operator. It takes two truth values, and returns true
if both are true, and false otherwise. You have two more of these operators, or and not. With
just these three, you can combine truth values in any way you like:

if ((cash > price) or customer_has_good_credit) and not out_of_stock:
 give_goods()

SHORT-CIRCUIT LOGIC

The Boolean operators have one interesting property: They only evaluate what they need to. For example, the
expression x and y requires both x and y to be true; so if x is false, the expression returns false immediately,
without worrying about y. Actually, if x is false, it returns x—otherwise it returns y. (Can you see how this
gives the expected meaning?) This behavior is called short-circuit logic: the Boolean operators are often called
logical operators, and as you can see, the second value is sometimes “short-circuited.” This works with or, too.
In the expression x or y, if x is true, it is returned, otherwise y is returned. (Can you see how this makes sense?)

So, how is this useful? Let’s say a user is supposed to enter his or her name, but may opt to enter
nothing, in which case you want to use the default value '<unknown>'. You could use an if statement, but
you could also state things very succinctly:

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 93

name = raw_input('Please enter your name: ') or '<unknown>'

In other words, if the return value from raw_input is true (not an empty string), it is assigned to name
(nothing changes); otherwise, the default '<unknown>' is assigned to name.

This sort of short-circuit logic can be used to implement the so-called “ternary operator” (or conditional
operator), found in languages such as C and Java. For a thorough explanation, see Alex Martelli’s recipe on the
subject in the Python Cookbook (http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/
52310).

Assertions
There is a useful relative of the if statement, which works more or less like this (pseudocode):

if not condition:
 crash program

Now, why on earth would you want something like that? Simply because it’s better that
your program crashes when an error condition emerges than at a much later time. Basically,
you can require that certain things be true. The keyword used in the statement is assert:

>>> age = 10
>>> assert 0 < age < 100
>>> age = -1
>>> assert 0 < age < 100
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AssertionError

It can be useful to put the assert statement in your program as a checkpoint, if you know
something has to be true for your program to work correctly.

A string may be added after the condition, to explain the assertion:

>>> age = -1
>>> assert 0 < age < 100, 'The age must be realistic'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AssertionError: The age must be realistic

Loops
Now you know how to do something if a condition is true (or false), but how do you do some-
thing several times? For example, you might want to create a program that reminds you to pay
the rent every month, but with the tools we have looked at until now, you’d have to write the
program like this (pseudocode):

94 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

send mail
wait one month
send mail
wait one month
send mail
wait one month
(...and so on)

But what if you wanted it to continue doing this until you stopped it? Basically, you want
something like this (again, pseudocode):

while we aren't stopped:
 send mail
 wait one month

Or, let’s take a simpler example. Let’s say that you want to print out all the numbers from
1 to 100. Again, you could do it the stupid way:

print 1
print 2
print 3

. . . and so on. But you didn’t start using Python because you wanted to do stupid things, right?

while Loops
In order to avoid the cumbersome code of the preceding example, it would be useful to be able
to do something like this:

x = 1
while x <= 100:
 print x
 x += 1

Now, how do you do that in Python? You guessed it—you do it just like that. Not that
complicated is it? You could also use a loop to ensure that the user enters a name, as follows:

name = ''
while not name:
 name = raw_input('Please enter your name: ')
print 'Hello, %s!' % name

Try running this, and then just pressing the Enter key when asked to enter your name: the
question appears again because name is still an empty string, which evaluates to false.

■Tip What would happen if you entered just a space character as your name? Try it. It is accepted because
a string with one space character is not empty, and therefore not false. This is definitely a flaw in our little
program, but easily corrected: just change while not name to while not name or name.isspace(),
or, perhaps, while not name.strip().

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 95

for Loops
The while statement is very flexible. It can be used to repeat a block of code while any condition
is true. While this may be very nice in general, sometimes you may want something tailored to
your specific needs. One such need is to perform a block of code for each element of a set (or,
actually, sequence or other iterable object) of values. You can do this with the for statement:

words = ['this', 'is', 'an', 'ex', 'parrot']
for word in words:
 print word

or

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
for number in numbers:
 print number

Because iterating (another word for “looping”) over a range of numbers is a common thing
to do, there is a built-in function to make ranges for you:

>>> range(0, 10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Ranges work like slices. They include the first limit (in this case 0), but not the last (in this
case 10). Quite often, you want the ranges to start at 0, and this is actually assumed if you only
supply one limit (which will then be the last):

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

■Tip There is also another function called xrange that works just like range in loops, but where range
creates the whole sequence at once, xrange creates only one number at a time. This can be useful when
iterating over huge sequences more efficiently, but in general you needn’t worry about it.

The following program writes out the numbers from 1 to 100:

for number in range(1,101):
 print number

Notice that this is much more compact than the while loop I used earlier.

■Tip If you can use a for loop rather than a while loop, you should probably do so.

96 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

Iterating Over Dictionaries
To loop over the keys of a dictionary, you can use a plain for statement, just as you can with
sequences:

d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
 print key, 'corresponds to', d[key]

In Python versions before 2.2, you would have used a dictionary method such as keys to
retrieve the keys (since direct iteration over dictionaries wasn’t allowed). If only the values
were of interest, you could have used d.values instead of d.keys. You may remember that
d.items returns key-value pairs as tuples. One great thing about for loops is that you can use
sequence unpacking in them:

for key, value in d.items():
 print key, 'corresponds to', value

To make your iteration more efficient, you can use the methods iterkeys (equivalent to
the plain for loop), itervalues, or iteritems. (These don’t return lists, but iterators, which are
explained in Chapter 9.)

■Note As always, the order of dictionary elements is undefined. In other words, when iterating over either
the keys or the values of a dictionary, you can be sure that you’ll process all of them, but you can’t know in
which order. If the order is important, you can store the keys or values in a separate list and, for example, sort
it before iterating over it.

Some Iteration Utilities
There are a few functions that can be useful when iterating over a sequence (or other iterable
object). Some of these are available in the itertools module (described in Chapter 9), but there
are some built-in functions that come in quite handy as well.

Parallel Iteration

Sometimes you want to iterate over two sequences at the same time. Let’s say that you have the
following two lists:

names = ['anne', 'beth', 'george', 'damon']
ages = [12, 45, 32, 102]

If you want to print out names with corresponding ages, you could do the following:

for i in range(len(names)):
 print names[i], 'is', ages[i], 'years old'

Here I use i as a standard variable name for loop indices (as these things are called).

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 97

A useful tool for parallel iteration is the built-in function zip, which “zips” together the
sequences, returning a list of tuples:

>>> zip(names, ages)
[('anne', 12), ('beth', 45), ('george', 32), ('damon', 102)]

Now I can unpack the tuples in my loop:

for name, age in zip(names, ages):
 print name, 'is', age, 'years old'

The zip function works with as many sequences as you want. It’s important to note what
zip does when the sequences are of different lengths: it stops when the shortest sequence is
“used up”:

>>> zip(range(5), xrange(100000000))
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

I wouldn’t recommend using range instead of xrange in the preceding example—although
only the first five numbers are needed, range calculates all the numbers, and that may take a lot
of time. With xrange, this isn’t a problem because it calculates only those numbers needed.

Numbered Iteration

In some cases you want to iterate over a sequence of objects and at the same time have access
to the index of the current object. For example, you might want to replace every string that
contains the substring 'xxx' in a list of strings. There would certainly be many ways of doing
this, but let’s say you want to do something along the following lines:

for string in strings:
 if 'xxx' in string:
 index = strings.index(string)
 strings[index] = '[censored]'

This would work, but it seems unnecessary to search for the given string before replacing
it. Also, if you didn’t replace it, the search might give you the wrong index (that is, the index of
some previous occurrence of the same word). A better version would be the following:

index = 0
for string in strings:
 if 'xxx' in string:
 strings[index] = '[censored]'
 index += 1

This also seems a bit awkward, although acceptable. There is another solution, however;
you can use the built-in function enumerate:

for index, string in enumerate(strings):
 if 'xxx' in string:
 strings[index] = '[censored]'

This function lets you iterate over index-value pairs, where the indices are supplied
automatically.

98 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

Reversed and Sorted Iteration

Let’s look at another couple of useful functions: reversed and sorted. They’re similar to the list
methods reverse and sort (with sorted taking similar arguments as sort), but they work on
any sequence or iterable object, and instead of modifying the object in place, they return
reversed and sorted versions:

>>> sorted([4, 3, 6, 8, 3])
[3, 3, 4, 6, 8]
>>> sorted('Hello, world!')
[' ', '!', ',', 'H', 'd', 'e', 'l', 'l', 'l', 'o', 'o', 'r', 'w']
>>> list(reversed('Hello, world!'))
['!', 'd', 'l', 'r', 'o', 'w', ' ', ',', 'o', 'l', 'l', 'e', 'H']
>>> ''.join(reversed('Hello, world!'))
'!dlrow ,olleH'

Note that although sorted returns a list, reversed returns a more mysterious iterable object.
You needn’t worry about what this really means; you can use it in for loops or methods such as
join without any problems. You just can’t index or slice it or call list methods on it directly; in
order to do that you have to convert it, using the list type, as shown in the previous example.

Breaking Out of Loops
Usually, a loop simply executes a block until its condition becomes false, or until it has used up
all sequence elements—but sometimes you may want to interrupt the loop, to start a new iter-
ation (one “round” of executing the block), or to simply end the loop.

break

To end (break out of) a loop, you use break. Let’s say you wanted to find the largest square (an
integer that is the square of another integer) below 100. Then you start at 100 and iterate down-
wards to 0. When you’ve found a square, there’s no need to continue, so you simply break out
of the loop:

from math import sqrt
for n in range(99, 0, -1):
 root = sqrt(n)
 if root == int(root):
 print n
 break

If you run this program, it will print out 81, and stop. Notice that I’ve added a third argu-
ment to range—that’s the step, the difference between every pair of adjacent numbers in the
sequence. It can be used to iterate downwards as I did here, with a negative step value, and it
can be used to skip numbers:

>>> range(0, 10, 2)
[0, 2, 4, 6, 8]

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 99

continue

The continue statement is used less often than break. It causes the current iteration to end, and
to “jump” to the beginning of the next. It basically means “skip the rest of the loop body, but
don’t end the loop.” This can be useful if you have a large and complicated loop body and
several possible reasons for skipping it—in that case you can use continue as follows:

for x in seq:
 if condition1: continue
 if condition2: continue
 if condition3: continue

 do_something()
 do_something_else()
 do_another_thing()
 etc()

In many cases, however, simply using an if statement is just as good:

for x in seq:
 if not (condition1 or condition2 or condition3):
 do_something()
 do_something_else()
 do_another_thing()
 etc()

Even though continue can be a useful tool, it is not essential. The break statement, however,
is something you should get used to because it is used quite often in concert with while True,
as explained in the next section.

The while True/break Idiom

The while and for loops in Python are quite flexible, but every once in a while you may encounter
a problem that makes you wish you had more functionality. For example, let’s say you want to
do something while a user enters words at a prompt, and you want to end the loop when no
word is provided. One way of doing that would be

word = 'dummy'
while word:
 word = raw_input('Please enter a word: ')
 # do something with the word:
 print 'The word was ' + word

Here is an example session:

Please enter a word: first
The word was first
Please enter a word: second
The word was second
Please enter a word:

100 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

This works just like you want it to. (Presumably you’d do something more useful with the
word than print it out, though.) However, as you can see, this code is a bit ugly. To enter the
loop in the first place, you have to assign a dummy (unused) value to word. Dummy values like
this are usually a sign that you aren’t doing things quite right. Let’s try to get rid of it:

word = raw_input('Please enter a word: ')
while word:
 # do something with the word:
 print 'The word was ' + word
 word = raw_input('Please enter a word: ')

Here the dummy is gone, but I have repeated code (which is also a bad thing): I have to use
the same assignment and call to raw_input in two places. How can I avoid that? I can use the
while True/break idiom:

while True:
 word = raw_input('Please enter a word: ')
 if not word: break
 # do something with the word:
 print 'The word was ' + word

■Note An idiom is a common way of doing things that people who know the language are assumed to know.

The while True part gives you a loop that will never terminate by itself. Instead, you put
the condition in an if statement inside the loop, which calls break when the condition is
fulfilled. Thus you can terminate the loop anywhere inside the loop instead of only at the begin-
ning (as with a normal while loop). The if/break line splits the loop naturally in two parts: The first
takes care of setting things up (the part that would be duplicated with a normal while loop), and
the other part makes use of the initialization from the first part, provided that the loop condi-
tion is true.

Although you should be wary of using break too often (because it can make your loops
harder to read), this specific technique is so common that most Python programmers (including
yourself) will probably be able to follow your intentions.

else Clauses in Loops
When you use break statements in loops, it is often because you have “found” something, or
because something has “happened.” It’s easy to do something when you break out (like print n),
but sometimes you may want to do something if you didn’t break out. But how do you find out?
You could use a Boolean variable, set it to False before the loop, and set it to True when you
break out. Then you can use an if statement afterwards to check whether you did break out
or not:

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 101

broke_out = False
for x in seq:
 do_something(x)
 if condition(x):
 broke_out = True
 break
 do_something_else(x)
if not broke_out:
 print "I didn't break out!"

A simpler way is to add an else clause to your loop—it is only executed if you didn’t call
break. Let’s reuse the example from the preceding section on break:

from math import sqrt
for n in range(99, 81, -1):
 root = sqrt(n)
 if root == int(root):
 print n
 break
else:
 print "Didn't find it!"

Notice that I changed the lower (exclusive) limit to 81 to test the else clause. If you run the
program, it prints out “Didn’t find it!” because (as you saw in the section on break) the largest
square below 100 is 81. You can use continue, break, and else clauses both with for loops and
while loops.

List Comprehension—Slightly Loopy
List comprehension is a way of making lists from other lists (similar to set comprehension, if
you know that term from mathematics). It works in a way similar to for loops, and is actually
quite simple:

>>> [x*x for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The list is composed of x*x for each x in range(10). Pretty straightforward? What if you only
want to print out those squares that are divisible by 3? Then you can use the modulo operator—
y % 3 returns zero when y is divisible by 3. (Note that x*x is divisible by 3 only if x is divisible by
3.) You put this into your list comprehension by adding an if part to it:

>>> [x*x for x in range(10) if x % 3 == 0]
[0, 9, 36, 81]

102 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

You can also add more for parts:

>>> [(x, y) for x in range(3) for y in range(3)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

This can be combined with an if clause, just like before:

>>> girls = ['alice', 'bernice', 'clarice']
>>> boys = ['chris', 'arnold', 'bob']
>>> [b+'+'+g for b in boys for g in girls if b[0] == g[0]]
['chris+clarice', 'arnold+alice', 'bob+bernice']

This gives the pairs of boys and girls who have the same initial letter in their first name.

A BETTER SOLUTION

The boy/girl pairing example isn’t particularly efficient because it checks every possible pairing. There are
many ways of solving this problem in Python. The following was suggested by Alex Martelli:

girls = ['alice', 'bernice', 'clarice']
boys = ['chris', 'arnold', 'bob']
letterGirls = {}
for girl in girls:
 letterGirls.setdefault(girl[0], []).append(girl)
print [b+'+'+g for b in boys for g in letterGirls[b[0]]]

This program constructs a dictionary called letterGirl where each entry has a single letter as its key
and a list of girls’ names as its value. (The setdefault dictionary method is described in the previous chapter.)
After this dictionary has been constructed, the list comprehension loops over all the boys and looks up all the
girls whose name begins with the same letter as the current boy. This way the list comprehension doesn’t
have to try out every possible combination of boy and girl and check whether the first letters match.

And Three for the Road
To end the chapter, let’s take a quick look at three more statements: pass, del, and exec.

Nothing Happened!
Sometimes you need to do nothing. This may not be very often, but when it happens, it’s good
to know that you have the pass statement:

>>> pass
>>>

Not much going on here.
Now, why on earth would you want a statement that does nothing? It can be useful as a

placeholder while you are writing code. For example, you may have written an if statement
and you want to try it, but you lack the code for one of your blocks. Consider the following:

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 103

if name == 'Ralph Auldus Melish':
 print 'Welcome!'
elif name == 'Enid':
 # Not finished yet...
elif name == 'Bill Gates':
 print 'Access Denied'

This code won’t run because an empty block is illegal in Python. To fix this, simply add a
pass statement to the middle block:

if name == 'Ralph Auldus Melish':
 print 'Welcome!'
elif name == 'Enid':
 # Not finished yet...
 pass
elif name == 'Bill Gates':
 print 'Access Denied'

■Note An alternative to the combination of a comment and a pass statement is to simply insert a string.
This is especially useful for unfinished functions (see Chapter 6) and classes (see Chapter 7) because they will
then act as docstrings (explained in Chapter 6).

Deleting with del
In general, Python deletes names (or parts of data structures) that you don’t use anymore:

>>> scoundrel = {'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin = scoundrel
>>> scoundrel
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> scoundrel = None
>>> robin
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin = None

At first, robin and scoundrel are both bound to the same dictionary. So when I assign None
to scoundrel, the dictionary is still available through robin. But when I assign None to robin as
well, the dictionary suddenly floats around in the memory of the computer with no name
attached to it. There is no way I can retrieve it or use it, so the Python interpreter (in its infinite
wisdom) simply deletes it. (This is called garbage collection.) Note that I could have used any
value other than None as well. The dictionary would be just as gone.

Another way of doing this is to use the del statement (which we used to delete sequence
and dictionary elements in Chapters 2 and 4, remember?). This not only removes a reference to
an object, it also removes the name itself:

104 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

>>> x = 1
>>> del x
>>> x
Traceback (most recent call last):
 File "<pyshell#255>", line 1, in ?
 x
NameError: name 'x' is not defined

This may seem easy, but it can actually be a bit tricky to understand at times. For instance,
in the following example, x and y refer to the same list:

>>> x = ["Hello", "world"]
>>> y = x
>>> y[1] = "Python"
>>> x
['Hello', 'Python']

You might assume that by deleting x, you would also delete y, but that is not the case:

>>> del x
>>> y
['Hello', 'Python']

Why is this? x and y referred to the same list, but deleting x didn’t affect y at all. The reason
for this is that you only delete the name, not the list itself (the value). In fact, there is no way to
delete values in Python (and you don’t really need to because the Python interpreter does it by
itself whenever you don’t use the value anymore).

Executing and Evaluating Strings with exec and eval
Sometimes you may want to create Python code “on the fly” and execute it as a statement or
evaluate it as an expression. This may border on dark magic at times—consider yourself warned.

■Caution In this section, you learn to execute Python code stored in a string. This is a potential security
hole of great dimensions. If you execute a string where parts of the contents have been supplied by a user,
you have little or no control over what code you are executing. This is especially dangerous in network appli-
cations, such as CGI scripts, which you will learn about in Chapter 15.

exec

The statement for executing a string is exec:

>>> exec "print 'Hello, world!'"
Hello, world!

However, using this simple form of the exec statement is rarely a good thing; in most cases
you want to supply it with a namespace, a place where it can put its variables. You want to do
this so that the code doesn’t corrupt your namespace (that is, change your variables). For example,
let’s say that the code uses the name sqrt:

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 105

>>> from math import sqrt
>>> exec "sqrt = 1"
>>> sqrt(4)
Traceback (most recent call last):
 File "<pyshell#18>", line 1, in ?
 sqrt(4)
TypeError: object is not callable: 1

Well, why would you do something like that in the first place, you ask? The exec statement
is mainly useful when you build the code string on the fly. And if the string is built from parts
that you get from other places, and possibly from the user, you can rarely be certain of exactly
what it will contain. So to be safe, you give it a dictionary, which will work as a namespace for it.

■Note The concept of namespaces, or scopes, is a very important one. You will look at it in depth in the
next chapter, but for now you can think of a namespace as a place where you keep your variables, much like
an invisible dictionary. So when you execute an assignment like x = 1, you store the key x with the value 1
in the current namespace, which will often be the global namespace (which we have been using, for the most
part, up until now), but doesn’t have to be.

You do this by adding in <scope>, where <scope> is some dictionary that will function as
the namespace for your code string:

>>> from math import sqrt
>>> scope = {}
>>> exec 'sqrt = 1' in scope
>>> sqrt(4)
2.0
>>> scope['sqrt']
1

As you can see, the potentially destructive code does not overwrite the sqrt function; the
function works just like it should, and the sqrt variable resulting from the exec’ed assignment
is available from the scope.

Note that if you try to print out scope, you see that it contains a lot of stuff because the
dictionary called __builtins__ is automatically added and contains all built-in functions and
values:

>>> len(scope)
2
>>> scope.keys()
['sqrt', '__builtins__']

eval

A built-in function that is similar to exec is eval (for “evaluate”). Just as exec executes a series
of Python statements, eval evaluates a Python expression (written in a string) and returns the

106 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

value. (exec doesn’t return anything because it is a statement itself.) For example, you can use
the following to make a Python calculator:

>>> eval(raw_input("Enter an arithmetic expression: "))
Enter an arithmetic expression: 6 + 18 * 2
42

■Note The expression eval(raw_input(...)) is, in fact, equivalent to input(...).

You can supply a namespace with eval, just as with exec, although expressions rarely
rebind variables in the way statements usually do. (In fact, you can supply eval with two
namespaces, one global and one local. The global one must be a dictionary, but the local one
may be any mapping.)

■Caution Even though expressions don’t rebind variables as a rule, they certainly can (for example by
calling functions that rebind global variables). Therefore, using eval with an untrusted piece of code is no
safer than using exec. There is, at present, no safe way of executing untrusted code in Python. One alterna-
tive is to use an implementation of Python such as Jython (see Chapter 17) and use the some native mechanism
such as the Java sandbox.

PRIMING THE SCOPE

When supplying a namespace for exec or eval, you can also put some values in before actually using the
namespace:

>>> scope = {}
>>> scope['x'] = 2
>>> scope['y'] = 3
>>> eval('x * y', scope)
6

In the same way, a scope from one exec or eval call can be used again in another one:

>>> scope = {}
>>> exec 'x = 2' in scope
>>> eval('x*x', scope)
4

Actually, exec and eval are not used all that often, but they can be nice tools to keep in your back
pocket (figuratively, of course).

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 107

A Quick Summary
In this chapter you’ve seen several kinds of statements:

Printing. You can use the print statement to print several values by separating them with
commas. If you end the statement with a comma, later print statements will continue
printing on the same line.

Importing. Sometimes you don’t like the name of a function you want to import—perhaps
you’ve already used the name for something else. You can use the import...as... statement,
to locally rename a function.

Assignments. You’ve seen that through the wonder of sequence unpacking and chained
assignments, you can assign values to several variables at once, and that with augmented
assignments you can change a variable in place.

Blocks. Blocks are used as a means of grouping statements through indentation. They are
used in conditionals and loops, and as you see later in the book, in function and class defi-
nitions, among other things.

Conditionals. A conditional statement either executes a block or not, depending on a condi-
tion (Boolean expression). Several conditionals can be strung together with if/elif/else.

Assertions. An assertion simply asserts that something (a Boolean expression) is true,
optionally with a string explaining why it has to be so. If the expression happens to be false,
the assertion brings your program to a halt (or actually raises an exception—more on that
in Chapter 8). It’s better to find an error early than to let it sneak around your program
until you don’t know where it originated.

Loops. You either can execute a block for each element in a sequence (such as a range of
numbers) or continue executing it while a condition is true. To skip the rest of the block
and continue with the next iteration, use the continue statement; to break out of the loop,
use the break statement. Optionally, you may add an else clause at the end of the loop,
which will be executed if you didn’t execute any break statements inside the loop.

List comprehension. These aren’t really statements—they are expressions that look a lot
like loops, which is why I grouped them with the looping statements. Through list compre-
hension, you can build new lists from old ones, applying functions to the elements, filtering
out those you don’t want, and so on. The technique is quite powerful, but in many cases
using plain loops and conditionals (which will always get the job done) may be more readable.

pass, del, exec, and eval. The pass statement does nothing, which can be useful as a place-
holder, for example. The del statement is used to delete variables or parts of a datastructure,
but cannot be used to delete values. The exec statement is used to execute a string as if it
were a Python program. The built-in function eval evaluates an expression written in a
string and returns the result.

108 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E ME N T S

New Functions in This Chapter

What Now?
Now you’ve cleared the basics. You can implement any algorithm you can dream up; you can
read in parameters and print out the results. In the next couple of chapters, you learn about
something that will help you write larger programs without losing the big picture. That some-
thing is called abstraction.

Function Description

chr(n) Returns a one-character string with ordinal n
(0 ≤ n < 256)

eval(source[, globals[, locals]]) Evaluates a string as an expression and returns
the value

enumerate(seq) Yields (index, value) pairs suitable for iteration

ord(c) Returns the integer ordinal value of a one-
character string

range([start,] stop[, step]) Creates a list of integers

reversed(seq) Yields the values of seq in reverse order, suitable
for iteration

sorted(seq[, cmp][, key][, reverse]) Returns a list with the values of seq in sorted order

xrange([start,] stop[, step]) Creates an xrange object, used for iteration

zip(seq1, seq2,...) Creates a new sequence suitable for parallel
iteration

109

■ ■ ■

C H A P T E R 6

Abstraction

In this chapter, you learn how to group statements into functions, which enables you to tell
the computer how to do something, and to tell it only once. You won’t have to give it the same
detailed instructions over and over. The chapter provides a thorough introduction to parameters
and scoping; you learn what recursion is and what it can do for your programs, and you see how
functions themselves can be used as parameters, just like numbers, strings, and other objects.

Laziness Is a Virtue
The programs we’ve written so far have been pretty small, but if you want to make something
bigger, you’ll soon run into trouble. Consider what happens if you have written some code in
one place and need to use it in another place as well. For example, let’s say you wrote a snippet
of code that computed some Fibonacci numbers (a series of numbers in which each number is
the sum of the two previous ones):

fibs = [0, 1]
for i in range(8):
 fibs.append(fibs[-2] + fibs[-1])

After running this, fibs contains the first ten Fibonacci numbers:

>>> fibs
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

This is all right if what you want is to calculate the first ten Fibonacci numbers once. You
could even change the for loop to work with a dynamic range, with the length of the resulting
sequence supplied by the user:

fibs = [0, 1]
num = input('How many Fibonacci numbers do you want? ')
for i in range(num-2):
 fibs.append(fibs[-2] + fibs[-1])
print fibs

■Note Remember that you can use raw_input if you want to read in a plain string. In this case, you would
then have had to convert it to an integer by using the int function.

110 C H A P T E R 6 ■ A B S T R A C T I O N

But what if you also want to use the numbers for something else? You could certainly just
write the same loop again when needed, but what if you had written a more complicated piece
of code, for example, one that downloaded a set of Web pages and computed the frequencies
of all the words used? Would you still want to write all the code several times, once for each
time you needed it? No, real programmers don’t do that. Real programmers are lazy. Not lazy
in a bad way, but in the sense that they don’t do unnecessary work.

So what do real programmers do? They make their programs more abstract. You could
make the previous program more abstract as follows:

num = input('How many numbers do you want? ')
print fibs(num)

Here, only what is specific to this program is written concretely (reading in the number, and
printing out the result). Actually computing the Fibonacci numbers is done in an abstract manner:
you simply tell the computer to do it. You don’t say specifically how it should be done. You create a
function called fibs, and use it when you need the functionality of the little Fibonacci program.
It saves you a lot of effort if you need it in several places.

Abstraction and Structure
Abstraction can be useful as a labor saver, but it is actually more important than that. It is the
key to making computer programs understandable to humans (which is essential, whether
you’re writing them or reading them). The computers themselves are perfectly happy with very
concrete and specific instructions, but humans generally aren’t. If you ask me for directions to
the cinema, for example, you wouldn’t want me to answer, “Walk 10 steps forward, turn 90 degrees
to your left, walk another 5 steps, turn 45 degrees to your right, walk 123 steps.” You would soon
lose track, wouldn’t you?

Now, if I instead told you to “Walk down this street until you get to a bridge, cross the
bridge, and the cinema is to your left,” then you’d certainly understand me. The point is that
you already know how to walk down the street, and how to cross a bridge. You don’t need
explicit instructions on how to do either.

You structure computer programs in a similar fashion. Your programs should be quite
abstract, as in “Download page, compute frequencies, print the frequency of each word.” This
is easily understandable. In fact, let’s translate this high-level description to a Python program
right now:

page = download_page()
freqs = compute_frequencies(page)
for word, freq in freqs:
 print word, freq

From reading this, you can understand what the program does. However, you haven’t
explicitly said anything about how it should do it. You just tell the computer to download the
page and compute the frequencies. The specifics of these operations will have to be written
somewhere else—in separate function definitions.

C H A P T E R 6 ■ A B S T R A C T I O N 111

Creating Your Own Functions
A function is something you can call (possibly with some parameters, the things you put in the
parentheses), which performs an action and returns a value. In general, you can tell whether
something is callable or not with the built-in function callable:

>>> import math
>>> x = 1
>>> y = math.sqrt
>>> callable(x)
0
>>> callable(y)
1

As you know from the previous section, creating functions is central to structured program-
ming. So how do you define a function? With the def (or “function definition”) statement:

def hello(name):
 return 'Hello, ' + name + '!'

After running this, you have a new function available, called hello, which returns a string
with a greeting for the name given as the only parameter. You can use this function just like you
used the built-in ones:

>>> print hello('world')
Hello, world!
>>> print hello('Gumby')
Hello, Gumby!

Pretty neat, huh? Consider how you would write a function that returned a list of Fibonacci
numbers. Easy! You just use the code from before, and instead of reading in a number from the
user, you receive it as a parameter:

def fibs(num):
 result = [0, 1]
 for i in range(num-2):
 result.append(result[-2] + result[-1])
 return result

After running this statement, you’ve basically told the interpreter how to calculate
Fibonacci numbers—so now you don’t have to worry about the details anymore. You simply
use the function fibs:

>>> fibs(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
>>> fibs(15)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

The names num and result are quite arbitrary in this example, but return is important. The
return statement is used to return something from the function (which is also how we used it
in the preceding hello function).

112 C H A P T E R 6 ■ A B S T R A C T I O N

■Tip Your functions can return more than one value—simply collect them in a tuple and return that.

Documenting Functions
If you want to document your functions so that you’re certain that others will understand them
later on, you can add comments (beginning with the hash sign, #). Another way of writing
comments is simply to write strings by themselves. Such strings can be particularly useful in
some places, such as right after a def statement (and at the beginning of a module or a class—
you learn more about those later in the book). If you put a string at the beginning of a function,
it is stored as part of the function and is called a docstring. The following code demonstrates
how to add a docstring to a function:

def square(x):
 'Calculates the square of the number x.'
 return x*x

The docstring may be accessed like this:

>>> square.__doc__
'Calculates the square of the number x.'

■Note __doc__ is a function attribute. You’ll learn a lot more about attributes in Chapter 7. The double
underscores in the attribute name mean that this is a special attribute. Special or “magic” attributes like this
are discussed in Chapter 9.

There is a built-in function called help, which can be quite useful. If you use it in the inter-
active interpreter, you can get information about a function, including its docstring:

>>> help(square)
Help on function square in module __main__:

square(x)
 Calculates the square of the number x.

You meet the help function again in Chapter 10.

Functions That Aren’t Really Functions
Functions, in the mathematical sense, always return something that is calculated from their
parameters. In Python, some functions don’t return anything. In other languages (such as Pascal),
such functions may be called other things (such as procedures), but in Python a function is a
function, even if it technically isn’t. Functions that don’t return anything simply don’t have a
return statement. Or, if they do have return statements, there is no value after the word return:

C H A P T E R 6 ■ A B S T R A C T I O N 113

def test():
 print 'This is printed'
 return
 print 'This is not'

Here, the return statement is used simply to end the function:

>>> x = test()
This is printed

As you can see, the second print statement is skipped. (This is a bit like using break in
loops, except that you break out of the function.) But if test doesn’t return anything, what does
x refer to? Let’s see:

>>> x
>>>

Nothing there. Let’s look a bit closer:

>>> print x
None

That’s a familiar value: None. So all functions do return something: it’s just that they return
None when you don’t tell them what to return. I guess I was a bit unfair when I said that some
functions aren’t really functions.

The Magic of Parameters
Using functions is pretty straightforward, and creating them isn’t all that complicated either.
The way parameters work may, however, seem a bit like magic at times. First, let’s do the basics.

Where Do the Values Come From?
Sometimes, when defining a function, you may wonder where parameters get their values
from. In general, you shouldn’t worry about that. Writing a function is a matter of providing a
service to whatever part of your program (and possibly even other programs) might need it.
Your task is to make sure the function does its job if it is supplied with acceptable parameters,
and preferably fails in an obvious manner if the parameters are wrong. (You do this with assert
or exceptions in general. More about exceptions in Chapter 8.)

■Note The variables you write after your function name in def statements are often called the formal
parameters of the function, while the values you supply when you call the function are called the actual parameters,
or arguments. In general, I won’t be too picky about the distinction. If it is important, I will call the actual
parameters “values” to distinguish them from the formal parameters.

114 C H A P T E R 6 ■ A B S T R A C T I O N

Can I Change a Parameter?
So, your function gets a set of values in through its parameters. Can you change them? And
what happens if you do? Well, the parameters are just variables like all others, so this works as
you would expect. Assigning a new value to a parameter inside a function won’t change the
outside world at all:

>>> def try_to_change(n):
 n = 'Mr. Gumby'

>>> name = 'Mrs. Entity'
>>> try_to_change(name)
>>> name
'Mrs. Entity'

Inside try_to_change, the parameter n gets a new value, but as you can see, that doesn’t
affect the variable name. After all, it’s a completely different variable. It’s just as if you did some-
thing like this:

>>> name = 'Mrs. Entity'
>>> n = name # This is almost what happens when passing a parameter
>>> n = 'Mr. Gumby' # This is done inside the function
>>> name
'Mrs. Entity'

Here, the result is obvious. While the variable n is changed, the variable name is not. Similarly,
when you rebind (assign to) a parameter inside a function, variables outside the function will
not be affected.

■Note Parameters are stored in what is called a local scope. Scoping is discussed later in this chapter.

Strings (and numbers and tuples) are immutable: you can’t modify them. Therefore there
isn’t much to say about them as parameters. But consider what happens if you use a mutable
data structure such as a list:

>>> def change(n):
 n[0] = 'Mr. Gumby'

>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> change(names)
>>> names
['Mr. Gumby', 'Mrs. Thing']

In this example, the parameter is changed. There is one crucial difference between this
example and the previous one. In the previous one, we simply gave the local variable a new
value, but in this one we actually modify the list that the variable names is bound to. Sound
strange? It’s not really that strange; let’s do it again without the function call:

C H A P T E R 6 ■ A B S T R A C T I O N 115

>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> n = names # Again pretending to pass names as a parameter
>>> n[0] = 'Mr. Gumby' # Change the list
>>> names
['Mr. Gumby', 'Mrs. Thing']

You’ve seen this sort of thing before. When two variables refer to the same list, they . . .
refer to the same list. It’s really as simple as that. If you want to avoid this, you have to make a
copy of the list. When you do slicing on a sequence, the returned slice is always a copy. Thus, if
you make a slice of the entire list you get a copy:

>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> n = names[:]

Now n and names contain two separate (nonidentical) lists that are equal:

>>> n is names
0
>>> n == names
1

If you change n now (as you did inside the function change), it won’t affect names:

>>> n[0] = 'Mr. Gumby'
>>> n
['Mr. Gumby', 'Mrs. Thing']
>>> names
['Mrs. Entity', 'Mrs. Thing']

Let’s try this trick with change:

>>> change(names[:])
>>> names
['Mrs. Entity', 'Mrs. Thing']

Now, the parameter n contains a copy, and your original list is safe.

■Note In case you wonder: Names that are local to a function, including parameters, do not clash with
names outside of the function (that is, global ones). For more information about this, see the discussion of
scoping, later in this chapter.

Why Would I Want to Modify My Parameters?

Using a function to change a data structure (such as a list or a dictionary) can be a good way of
introducing abstraction into your program. Let’s say you want to write a program that stores
names and that allows you to look up people either by their first, middle, or last names. You
might use a data structure like this:

116 C H A P T E R 6 ■ A B S T R A C T I O N

storage = {}
storage['first'] = {}
storage['middle'] = {}
storage['last'] = {}

The data structure storage is a dictionary with three keys: 'first', 'middle', and 'last'.
Under each of these keys, you store another dictionary. In these subdictionaries, you’ll use
names (first, middle, or last) as keys, and insert lists of people as values. For example, to add me
to this structure, you could do the following:

>>> me = 'Magnus Lie Hetland'
>>> storage['first']['Magnus'] = [me]
>>> storage['middle']['Lie'] = [me]
>>> storage['last']['Hetland'] = [me]

Under each key, you store a list of people. In this case, the lists contain only me.
Now, if you want a list of all the people registered who have the middle name Lie, you

could do the following:

>>> storage['middle']['Lie']
['Magnus Lie Hetland']

As you can see, adding people to this structure is a bit tedious, especially when you get
more people with the same first, middle, or last names, because then you have to extend the list
that is already stored under that name. Let’s add my sister, for example, and let’s assume you
don’t know what is already stored in the database:

>>> my_sister = 'Anne Lie Hetland'
>>> storage['first'].setdefault('Anne', []).append(my_sister)
>>> storage['middle'].setdefault('Lie', []).append(my_sister)
>>> storage['last'].setdefault('Hetland', []).append(my_sister)
>>> storage['first']['Anne']
['Anne Lie Hetland']
>>> storage['middle']['Lie']
['Magnus Lie Hetland', 'Anne Lie Hetland']

Imagine writing a large program filled with updates like this—it would quickly become
quite unwieldy.

The point of abstraction is to hide all the gory details of the updates, and you can do that
with functions. Let’s first make a function to initialize a data structure:

def init(data):
 data['first'] = {}
 data['middle'] = {}
 data['last'] = {}

In the preceding code, I’ve simply moved the initialization statements inside a function.
You can use it like this:

C H A P T E R 6 ■ A B S T R A C T I O N 117

>>> storage = {}
>>> init(storage)
>>> storage
{'middle': {}, 'last': {}, 'first': {}}

As you can see, the function has taken care of the initialization, making the code much
more readable.

■Note The keys of a dictionary don’t have a specific order, so when a dictionary is printed out, the order
may vary. If the order is different in your interpreter, don’t worry about it.

Before writing a function for storing names, let’s write one for getting them:

def lookup(data, label, name):
 return data[label].get(name)

With lookup you can take a label (such as 'middle') and a name (such as 'Lie') and get a
list of full names returned. In other words, assuming my name was stored, you could do this:

>>> lookup(storage, 'middle', 'Lie')
['Magnus Lie Hetland']

It’s important to notice that the list that is returned is the same list that is stored in the data
structure. So if you change the list, the change also affects the data structure. (This is not the
case if no people are found: then you simply return None.)

Now it’s time to write the function that stores a name in your structure:

def store(data, full_name):
 names = full_name.split()
 if len(names) == 2: names.insert(1, '')
 labels = 'first', 'middle', 'last'
 for label, name in zip(labels, names):
 people = lookup(data, label, name)
 if people:
 people.append(full_name)
 else:
 data[label][name] = [full_name]

The store function performs the following steps:

1. You enter the function with the parameters data and full_name set to some values that
you receive from the outside world.

2. You make yourself a list called names by splitting full_name.

3. If the length of names is 2 (you only have a first and a last name), you insert an empty
string as a middle name.

118 C H A P T E R 6 ■ A B S T R A C T I O N

4. You store the strings 'first', 'middle', and 'last' as a tuple in labels. (You could
certainly use a list here: it’s just convenient to drop the brackets.)

5. You use the zip function to combine the labels and names so they line up properly, and
for each pair (label, name), you do the following: (1) Fetch the list belonging to the
given label and name; (2) Append full_name to that list, or insert a new list if needed.

Let’s try it out:

>>> MyNames = {}
>>> init(MyNames)
>>> store(MyNames, 'Magnus Lie Hetland')
>>> lookup(MyNames, 'middle', 'Lie')
['Magnus Lie Hetland']

It seems to work. Let’s try some more:

>>> store(MyNames, 'Robin Hood')
>>> store(MyNames, 'Robin Locksley')
>>> lookup(MyNames, 'first', 'Robin')
['Robin Hood', 'Robin Locksley']
>>> store(MyNames, 'Mr. Gumby')
>>> lookup(MyNames, 'middle', '')
['Robin Hood', 'Robin Locksley', 'Mr. Gumby']

As you can see, if more people share the same first, middle, or last name, you can retrieve
them all together.

■Note This sort of application is well suited to object-oriented programming, which is explained in the
next chapter.

What If My Parameter Is Immutable?

In some languages (such as C++, Pascal, or Ada), rebinding parameters and having these changes
affect variables outside the function is an everyday thing. In Python, it’s not directly possible:
you can only modify the parameter objects themselves. But what if you have an immutable
parameter, such as a number?

Sorry, but it can’t be done. What you should do is return all the values you need from your
function (as a tuple, if there is more than one). For example, a function that increments the
numeric value of a variable by one could be written like this:

>>> def inc(x): return x + 1
...

>>> foo = 10
>>> foo = inc(foo)
>>> foo
11

C H A P T E R 6 ■ A B S T R A C T I O N 119

WHAT IF I REALLY WANT TO?

If you really want to modify your parameter, you can use a little trick—wrap your value in a list:

>>> def inc(x): x[0] = x[0] + 1
...
>>> foo = [10]
>>> inc(foo)
>>> foo
[11]

Simply returning the new value is generally considered a cleaner solution.

Keyword Parameters and Defaults
The parameters we’ve been using until now are called positional parameters because their
positions are important—more important than their names, in fact. Consider the following
two functions:

def hello_1(greeting, name):
 print '%s, %s!' % (greeting, name)

def hello_2(name, greeting):
 print '%s, %s!' % (name, greeting)

They both do exactly the same thing, only with their parameter names reversed:

>>> hello_1('Hello', 'world')
Hello, world!
>>> hello_2('Hello', 'world')
Hello, world!

Sometimes (especially if you have many parameters) the order may be hard to remember.
To make things easier, you can supply the name of our parameter:

>>> hello_1(greeting='Hello', name='world')
Hello, world!

The order here doesn’t matter at all:

>>> hello_1(name='world', greeting='Hello')
Hello, world!

The names do, however (as you may have gathered):

>>> hello_2(greeting='Hello', name='world')
world, Hello!

120 C H A P T E R 6 ■ A B S T R A C T I O N

The parameters that are supplied with a name like this are called keyword parameters. On
their own, the key strength of keyword parameters is that they can help clarify the role of each
parameter. Instead of having to use some odd and mysterious call like

>>> store('Mr. Brainsample', 10, 20, 13, 5)

you could use

>>> store(patient='Mr. Brainsample', hour=10, minute=20, day=13, month=5)

Even though it takes a bit more typing, it is absolutely clear what each parameter does.
Also, if you get the order mixed up, it doesn’t matter.

What really makes keyword arguments rock, however, is that you can give the parameters
in the function default values:

def hello_3(greeting='Hello', name='world'):
 print '%s, %s!' % (greeting, name)

When a parameter has a default value like this, you don’t have to supply it when you call
the function! You can supply none, some, or all, as the situation might dictate:

>>> hello_3()
Hello, world!
>>> hello_3('Greetings')
Greetings, world!
>>> hello_3('Greetings', 'universe')
Greetings, universe!

As you can see, this works well with positional parameters, except that you have to supply
the greeting if you want to supply the name. What if you want to supply only the name, leaving
the default value for the greeting? I’m sure you’ve guessed it by now:

>>> hello_3(name='Gumby')
Hello, Gumby!

Pretty nifty, huh? And that’s not all. You can combine positional and keyword parameters.
The only requirement is that all the positional parameters come first. If they don’t, the inter-
preter won’t know which ones they are (that is, which position they are supposed to have).

■Note Unless you know what you’re doing, you might want to avoid such mixing. It is generally used when
you have a small number of mandatory parameters and many modifying parameters with default values.

For example, our hello function might require a name, but allow us to (optionally) specify
the greeting and the punctuation:

def hello_4(name, greeting='Hello', punctuation='!'):
 print '%s, %s%s' % (greeting, name, punctuation)

This function can be called in many ways. Here are some of them:

C H A P T E R 6 ■ A B S T R A C T I O N 121

>>> hello_4('Mars')
Hello, Mars!
>>> hello_4('Mars', 'Howdy')
Howdy, Mars!
>>> hello_4('Mars', 'Howdy', '...')
Howdy, Mars...
>>> hello_4('Mars', punctuation='.')
Hello, Mars.
>>> hello_4('Mars', greeting='Top of the morning to ya')
Top of the morning to ya, Mars!
>>> hello_4()
Traceback (most recent call last):
 File "<pyshell#64>", line 1, in ?
 hello_4()
TypeError: hello_4() takes at least 1 argument (0 given)

■Note If I had given name a default value as well, the last example wouldn’t have raised an exception.

That’s pretty flexible, isn’t it? And we didn’t really have to do much to achieve it either. In
the next section we get even more flexible.

Collecting Parameters
Sometimes it can be useful to allow the user to supply any number of parameters. For example,
in the name-storing program (described earlier in this chapter), you can store only one name
at a time. It would be nice to be able to store more names, like this:

>>> store(data, name1, name2, name3)

For this to be useful, you should be allowed to supply as many names as you wanted. Actually,
that’s quite possible.

Try the following function definition:

def print_params(*params):
 print params

Here, I seemingly specify only one parameter, but it has an odd little star (or asterisk) in
front of it. What does that mean? Let’s call the function with a single parameter and see what
happens:

>>> print_params('Testing')
('Testing',)

You can see that what is printed out is a tuple because it has a comma in it. (Those tuples
of length one are a bit odd, aren’t they?) So using a star in front of a parameter puts it in a tuple?
The plural in params ought to give a clue about what’s going on:

122 C H A P T E R 6 ■ A B S T R A C T I O N

>>> print_params(1, 2, 3)
(1, 2, 3)

The star in front of the parameter puts all the values into the same tuple. It gathers them
up, so to speak. I wonder if we can combine this with ordinary parameters . . . Let’s write
another function and see:

def print_params_2(title, *params):
 print title
 print params

Let’s try it:

>>> print_params_2('Params:', 1, 2, 3)
Params:
(1, 2, 3)

It works! So the star means “Gather up the rest of the positional parameters.” I bet if I don’t
give any parameters to gather, params will be an empty tuple:

>>> print_params_2('Nothing:')
Nothing:
()

Indeed. How useful. Does it handle keyword arguments (the same as parameters), too?

>>> print_params_2('Hmm...', something=42)
Traceback (most recent call last):
 File "<pyshell#60>", line 1, in ?
 print_params_2('Hmm...', something=42)
TypeError: print_params_2() got an unexpected keyword argument 'something'

Doesn’t look like it. So we probably need another “gathering” operator for keyword
arguments. What do you think that might be? Perhaps **?

def print_params_3(**params):
 print params

At least the interpreter doesn’t complain about the function. Let’s try to call it:

>>> print_params_3(x=1, y=2, z=3)
{'z': 3, 'x': 1, 'y': 2}

Yep. We get a dictionary rather than a tuple. Let’s put them all together:

def print_params_4(x, y, z=3, *pospar, **keypar):
 print x, y, z
 print pospar
 print keypar

This works just like expected:

>>> print_params_4(1, 2, 3, 5, 6, 7, foo=1, bar=2)
1 2 3

C H A P T E R 6 ■ A B S T R A C T I O N 123

(5, 6, 7)
{'foo': 1, 'bar': 2}
>>> print_params_4(1, 2)
1 2 3
()
{}

By combining all these techniques, you can do quite a lot. If you wonder how some combi-
nation might work (or whether it’s allowed), just try it! (In the next section, you see how * and
** can be used at the point of call as well, regardless of whether they were used in the function
definition.)

Now, back to the original problem: how you can use this in the name-storing example.
The solution is shown here:

def store(data, *full_names):
 for full_name in full_names:
 names = full_name.split()
 if len(names) == 2: names.insert(1, '')
 labels = 'first', 'middle', 'last'
 for label, name in zip(labels, names):
 people = lookup(data, label, name)
 if people:
 people.append(full_name)
 else:
 data[label][name] = [full_name]

Using this function is just as easy as using the previous version, which only accepted
one name:

>>> d = {}
>>> init(d)
>>> store(d, 'Han Solo')

But now you can also do this:

>>> store(d, 'Luke Skywalker', 'Anakin Skywalker')
>>> lookup(d, 'last', 'Skywalker')
['Luke Skywalker', 'Anakin Skywalker']

Reversing the Process

Now you’ve learned about gathering up parameters in tuples and dictionaries, but it is in fact
possible to do the “opposite” as well, with the same two operators, * and **. What might the
opposite of parameter gathering be? Let’s say we have the following function available:

def add(x, y): return x + y

■Note You can find a more efficient version of this function in the operator module.

124 C H A P T E R 6 ■ A B S T R A C T I O N

Also, let’s say you have a tuple with two numbers that you want to add:

params = (1, 2)

This is more or less the opposite of what we did previously. Instead of gathering the
parameters, we want to distribute them. This is simply done by using the asterisk operator in
the “other end,” that is, when calling the function rather than when defining it:

>>> add(*params)
3

This works with parts of a parameter list, too, as long as the expanded part is last. You can
use the same technique with dictionaries, using the double asterisk operator. Assuming that
you have defined hello_3 as before, you can do the following:

>>> params = {'name': 'Sir Robin', 'greeting': 'Well met'}
>>> hello_3(**params)
Well met, Sir Robin!

Using the asterisk (or double asterisk) both when you define and call the function will
simply pass the tuple or dictionary right through, so you might as well not have bothered:

>>> def with_stars(**kwds):
 print kwds['name'], 'is', kwds['age'], 'years old'

>>> def without_stars(kwds):
 print kwds['name'], 'is', kwds['age'], 'years old'

>>> args = {'name': 'Mr. Gumby', 'age': 42}
>>> with_stars(**args)
Mr. Gumby is 42 years old
>>> without_stars(args)
Mr. Gumby is 42 years old

As you can see, in with_stars, I use stars both when defining and calling the function. In
without_stars, I don’t use the stars in either place but achieve exactly the same effect. So the
stars are only really useful if you use them either when defining a function (to allow a varying
number of arguments) or when calling a function (to “splice in” a dictionary or a sequence).

Example

With so many ways of supplying and receiving parameters, it’s easy to get confused. So let me tie it all together with
an example. First, let me define some functions:

def story(**kwds):
 return 'Once upon a time, there was a ' \
 '%(job)s called %(name)s.' % kwds

def power(x, y, *others):
 if others:

C H A P T E R 6 ■ A B S T R A C T I O N 125

 print 'Received redundant parameters:', others
 return pow(x, y)

def interval(start, stop=None, step=1):
 'Imitates range() for step > 0'
 if stop is None: # If the stop is not supplied...
 start, stop = 0, start # shuffle the parameters
 result = []
 i = start # We start counting at the start index
 while i < stop: # Until the index reaches the stop index...
 result.append(i) # ...append the index to the result...
 i += step # ...increment the index with the step (> 0)
 return result

Now let’s try them out:

>>> print story(job='king', name='Gumby')
Once upon a time, there was a king called Gumby.
>>> print story(name='Sir Robin', job='brave knight')
Once upon a time, there was a brave knight called Sir Robin.
>>> params = {'job': 'language', 'name': 'Python'}
>>> print story(**params)
Once upon a time, there was a language called Python.
>>> del params['job']
>>> print story(job='stroke of genius', **params)
Once upon a time, there was a stroke of genius called Python.
>>> power(2,3)
8
>>> power(3,2)
9
>>> power(y=3,x=2)
8
>>> params = (5,) * 2
>>> power(*params)
3125
>>> power(3, 3, 'Hello, world')
Received redundant parameters: ('Hello, world',)
27
>>> interval(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> interval(1,5)
[1, 2, 3, 4]
>>> interval(3,12,4)
[3, 7, 11]
>>> power(*interval(3,7))
Received redundant parameters: (5, 6)
81

126 C H A P T E R 6 ■ A B S T R A C T I O N

Feel free to experiment with these functions and functions of your own until you are confident that you understand
how this stuff works.

Scoping
What are variables, really? You can think of them as names referring to values. So, after the
assignment x = 1, the name x refers to the value 1. It’s almost like using dictionaries, where
keys refer to values, except that you’re using an “invisible” dictionary. Actually, this isn’t far
from the truth. There is a built-in function called vars, which returns this dictionary:

>>> x = 1
>>> scope = vars()
>>> scope['x']
1
>>> scope['x'] += 1
>>> x
2

■Caution In general, you should not modify the dictionary returned by vars because, according to the official
Python documentation, the result is undefined. In other words, you might not get the result you’re after.

This sort of “invisible dictionary” is called a namespace or scope. So, how many namespaces
are there? In addition to the global scope, each function call creates a new one:

>>> def foo(): x = 42
...
>>> x = 1
>>> foo()
>>> x
1

Here foo changes (rebinds) the variable x, but when you look at it in the end, it hasn’t
changed after all. That’s because when you call foo a new namespace is created, which is used
for the block inside foo. The assignment x = 42 is performed in this inner scope (the local
namespace), and therefore it doesn’t affect the x in the outer (global) scope. Variables that are
used inside functions like this are called local variables (as opposed to global variables). The
parameters work just like local variables, so there is no problem in having a parameter with the
same name as a global variable:

>>> def output(x): print x
...
>>> x = 1
>>> y = 2
>>> output(y)
2

C H A P T E R 6 ■ A B S T R A C T I O N 127

So far, so good. But what if you want to access the global variables inside a function? As
long as you only want to read the value of the variable (that is, you don’t want to rebind it),
there is generally no problem:

>>> def combine(parameter): print parameter + external
...
>>> external = 'berry'
>>> combine('Shrub')
Shrubberry

THE PROBLEM OF SHADOWING

Reading the value of global variables is not a problem in general, but one thing may make it problematic. If a
local variable or parameter exists with the same name as the global variable you want to access, you can’t do
it directly. The global variable is shadowed by the local one.

If needed, you can still gain access to the global variable by using the function globals, a close relative
of vars, which returns a dictionary with the global variables. (locals returns a dictionary with the local variables.)

For example, if you had a global variable called parameter in the previous example, you couldn’t access
it from within combine because you have a parameter with the same name. In a pinch, however, you could
have referred to it as globals()['parameter']:

>>> def combine(parameter):
 print parameter + globals()['parameter']
...
>>> parameter = 'berry'
>>> combine('Shrub')
Shrubberry

Rebinding Global Variables
Rebinding global variables (making them refer to some new value) is another matter. If you
assign a value to a variable inside a function, it automatically becomes local unless you tell
Python otherwise. And how do you think you can tell it to make a variable global?

>>> x = 1
>>> def change_global():
 global x
 x = x + 1

>>> change_global()
>>> x
2

Piece of cake!

128 C H A P T E R 6 ■ A B S T R A C T I O N

■Note Use global variables only when you have to. They tend to make your code less readable and less
robust. Local variables make your program more abstract because they are “hidden” inside functions.

NESTED SCOPES

Python’s scopes may (from Python 2.2 on) be nested. This means that you can (among other things) write
functions like the following:

def multiplier(factor):
 def multiplyByFactor(number):
 return number*factor
 return multiplyByFactor

One function is inside another, and the outer function returns the inner one. Each time the outer function
is called, the inner one gets redefined, and each time, the variable factor may have a new value. With nested
scopes, this variable from the outer local scope (of multiplier) is accessible in the inner function later on,
as follows:

>>> double = multiplier(2)
>>> double(5)
10
>>> triple = multiplier(3)
>>> triple(3)
9
>>> multiplier(5)(4)
20

A function such as multiplyByFactor that stores its enclosing scopes is called a closure.
If, for some reason, you’re using Python 2.1, you have to add the following line at the beginning of

your program:

from __future__ import nested_scopes

In older versions of Python, variables from surrounding nested scopes are not available. You get an error
message like this:

>>> double = multiplier(2)
>>> double(2)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 3, in multiplyByFactor
NameError: factor

Because old versions of Python only have local and global scopes, and factor is not a local variable in
multiplyByFactor, Python assumes that it must be a global variable. But it isn’t, so you get an exception.
To store a variable from an enclosing scope, you can use a trick—storing it as a default value:

C H A P T E R 6 ■ A B S T R A C T I O N 129

def multiplier(factor):
 def multiplyByFactor(number, factor=factor):
 return number*factor
 return multiplyByFactor

This works because default values are “frozen” when a function is defined.

Recursion
You’ve learned a lot about making functions and calling them. You also know that functions
can call other functions. What might come as a surprise is that functions can call themselves.

If you haven’t encountered this sort of thing before, you may wonder what this word
“recursion” is. It simply means referring to (or, in our case, “calling”) yourself. A humorous
definition goes like this:

re•cur•sion \ri-’k&r-zh&n\ n: see recursion.

Recursive definitions (including recursive function definitions) include references to the
term they are defining. Depending on the amount of experience you have with it, recursion can
be either mind-boggling or quite straightforward. For a deeper understanding of it, you should
probably buy yourself a good textbook on computer science, but playing around with the Python
interpreter can certainly help.

In general, you don’t want recursive definitions like the humorous one of the word “recur-
sion” because you won’t get anywhere. You look up recursion, which again tells you to look up
recursion, and so on. A similar function definition would be

def recursion():
 return recursion()

It is obvious that this doesn’t do anything—it’s just as silly as the mock dictionary defini-
tion. But what happens if you run it? You’re welcome to try: The program simply crashes (raises
an exception) after a while. Theoretically, it should simply run forever. However, each time a
function is called, it uses up a little bit of memory, and after enough function calls have been
made (before the previous calls have returned), there is no more room, and the program ends
with the error message maximum recursion depth exceeded.

The sort of recursion you have in this function is called infinite recursion (just as a loop
beginning with while True and containing no break or return statements is an infinite loop)
because it never ends (in theory). What you want is a recursive function that does something
useful. A useful recursive function usually consists of the following parts:

• A base case (for the smallest possible problem) when the function returns a value directly

• A recursive case, which contains one or more recursive calls on smaller parts of the problem

The point here is that by breaking the problem up into smaller pieces, the recursion can’t
go on forever because you always end up with the smallest possible problem, which is covered
by the base case.

130 C H A P T E R 6 ■ A B S T R A C T I O N

So you have a function calling itself. But how is that even possible? It’s really not as strange
as it might seem. As I said before, each time a function is called, a new namespace is created for
that specific call; that means that when a function calls “itself,” you are actually talking about
two different functions (or, rather, the same function with two different namespaces). You
might think of it as one creature of a certain species talking to another one of the same species.

Two Classics: Factorial and Power
In this section, we examine two classic recursive functions. First, let’s say you want to compute
the factorial of a number n. The factorial of n is defined as n × (n–1) × (n–2) × . . . × 1. It’s used
in many mathematical applications (for example, in calculating how many different ways there
are of putting n people in a line). How do you calculate it? You could always use a loop:

def factorial(n):
 result = n
 for i in range(1,n):
 result *= i
 return result

This works and is a straightforward implementation. Basically, what it does is this: first, it
sets the result to n; then, the result is multiplied by each number from 1 to n–1 in turn; finally,
it returns the result. But you can do this differently if you like. The key is the mathematical defi-
nition of the factorial, which can be stated as follows:

• The factorial of 1 is 1.

• The factorial of a number n greater than 1 is the product of n and the factorial of n–1.

As you can see, this definition is exactly equivalent to the one given at the beginning of
this section.

Now, consider how you implement this definition as a function. It is actually pretty
straightforward, once you understand the definition itself:

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

This is a direct implementation of the definition. Just remember that the function call
factorial(n) is a different entity from the call factorial(n-1).

Let’s consider another example. Assume you want to calculate powers, just like the built-in
function pow, or the operator **. You can define the (integer) power of a number in several
different ways, but let’s start with a simple one: power(x,n) (x to the power of n) is the number x
multiplied by itself n-1 times (so that x is used as a factor n times). So power(2,3) is 2 multiplied
with itself twice, or 2 × 2 × 2 = 8.

This is easy to implement:

C H A P T E R 6 ■ A B S T R A C T I O N 131

def power(x, n):
 result = 1
 for i in range(n):
 result *= x
 return result

This is a sweet and simple little function, but again you can change the definition to a
recursive one:

• power(x, 0) is 1 for all numbers x.

• power(x, n) for n > 0 is the product of x and power(x, n-1).

Again, as you can see, this gives exactly the same result as in the simpler, iterative definition.
Understanding the definition is the hardest part—implementing it is easy:

def power(x, n):
 if n == 0:
 return 1
 else:
 return x * power(x, n-1)

Again, I have simply translated my definition from a slightly formal textual description
into a programming language (Python).

■Tip If a function or an algorithm is complex and difficult to understand, clearly defining it in your own
words before actually implementing it can be very helpful. Programs in this sort of “almost-programming-
language” are often referred to as pseudocode.

So what is the point of recursion? Can’t you just use loops instead? The truth is—yes, you
can, and in most cases it will probably be (at least slightly) more efficient. But in many cases,
recursion can be more readable—sometimes much more readable—especially if one under-
stands the recursive definition of a function. And even though you could conceivably avoid
ever writing a recursive function, as a programmer you will most likely have to understand
recursive algorithms and functions created by others, at the very least.

Another Classic: Binary Search
As a final example of recursion in practice, let’s have a look at the algorithm called binary search.

You probably know of the game where you are supposed to guess what someone is thinking
about by asking 20 yes-or-no questions. To make the most of your questions, you try to cut the
number of possibilities in (more or less) half. For example, if you know the subject is a person,
you might ask “Are you thinking of a woman?” You don’t start by asking “Are you thinking
of John Cleese?” unless you have a very strong hunch. A version of this game for those more

132 C H A P T E R 6 ■ A B S T R A C T I O N

numerically inclined is to guess a number. For example, your partner is thinking of a number
between 1 and 100, and you have to guess which one it is. Of course, you could do it in a hundred
guesses, but how many do you really need?

As it turns out, you only need seven questions. The first one is something like “Is the number
greater than 50?” If it is, then you ask “Is it greater than 75?” You keep halving the interval until
you find the number. You can do this without much thought.

The same tactic can be used in many different contexts. One common problem is to find
out whether a number is to be found in a (sorted) sequence, and even to find out where it is.
Again, you follow the same procedure: “Is the number to the right of the middle of the sequence?”
If it isn’t, “Is it in the second quarter (to the right of the middle of the left half)?” and so on. You
keep an upper and a lower limit to where the number may be, and keep splitting that interval
in two with every question.

The point is that this algorithm lends itself naturally to a recursive definition and imple-
mentation. Let’s review the definition first, to make sure we know what we’re doing:

• If the upper and lower limits are the same, they both refer to the correct position of the
number, so return it.

• Otherwise, find the middle of the interval (the average of the upper and lower bound),
and find out if the number is in the right or left half. Keep searching in the proper half.

The key to the recursive case is that the numbers are sorted, so when you have found the
middle element, you can just compare it to the number you’re looking for. If your number is
larger, then it must be to the right, and if it is smaller, it must be to the left. The recursive part
is “Keep searching in the proper half,” because the search will be performed in exactly the
manner described in the definition. (Note that the search algorithm returns the position where
the number should be—if it’s not present in the sequence, this position will, naturally, be occu-
pied by another number.)

You’re now ready to implement binary search:

def search(sequence, number, lower, upper):
 if lower == upper:
 assert number == sequence[upper]
 return upper
 else:
 middle = (lower + upper) // 2
 if number > sequence[middle]:
 return search(sequence, number, middle+1, upper)
 else:
 return search(sequence, number, lower, middle)

This does exactly what the definition said it should: If lower == upper, then return upper,
which is the upper limit. Note that you assume (assert) that the number you are looking for
(number) has actually been found (number == sequence[upper]). If you haven’t reached your
base case yet, you find the middle, check whether your number is to the left or right, and call

C H A P T E R 6 ■ A B S T R A C T I O N 133

search recursively with new limits. You could even make this easier to use by making the limit
specifications optional. You simply add the following conditional to the beginning of the
function definition:

def search(sequence, number, lower=0, upper=None):
 if upper is None: upper = len(sequence)-1
 ...

Now, if you don’t supply the limits, they are set to the first and last positions of the sequence.
Let’s see if this works:

>>> seq = [34, 67, 8, 123, 4, 100, 95]
>>> seq.sort()
>>> seq
[4, 8, 34, 67, 95, 100, 123]
>>> search(seq, 34)
2
>>> search(seq, 100)
5

But why go to all this trouble, you ask? For one thing, you could simply use the list method
index, and if you wanted to implement this yourself, you could just make a loop starting at the
beginning and iterating along until you found the number.

Sure. Using index is just fine. But using a simple loop may be a bit inefficient. Remember I
said you needed seven questions to find one number (or position) among 100? And the loop
obviously needs 100 questions in the worst-case scenario. Big deal, you say. But if the list has
100,000,000,000,000,000,000,000,000,000,000,000 elements, and the same number of questions
with a loop (perhaps a somewhat unrealistic size for a Python list), this sort of thing starts to
matter. Binary search would then need only 117 questions. Pretty efficient, huh?

■Tip There is a standard library module called bisect, which implements binary search very efficiently.

Throwing Functions Around
By now, you are probably used to using functions just like other objects (strings, number,
sequences, and so on) by assigning them to variables, passing them as parameters, and
returning them from other functions. Some programming languages (such as Scheme or LISP)
use functions in this way to accomplish almost everything. Even though you usually don’t rely
that heavily on functions in Python (you usually make your own kinds of objects—more about
that in the next chapter), you can. This section describes a few functions that are useful for this
sort of “functional programming.” These functions are map, filter, reduce, and apply.

134 C H A P T E R 6 ■ A B S T R A C T I O N

LAMBDA EXPRESSIONS

In the material that follows, I sometimes use something called lambda expressions. These are small, unnamed
functions that can only contain an expression, and that return its value. A lambda expression is written like this:

lambda x, y, z: x + y + z

The first word, lambda, is a reserved word (keyword).1 It is followed by the parameters, a colon (:), and
finally the body (an expression).

Although lambdas can be useful at times, you are usually better off writing a full-fledged function, espe-
cially because the function name will then say something about what your function does.

map
The map function “maps” one sequence into another (of the same length) by applying a function
to each of the elements. For example, you may have a list of numbers, and you want to create
another list in which all the numbers are doubled:

>>> numbers = [72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]
>>> map(lambda n: 2*n, numbers)
[144, 202, 216, 216, 222, 88, 64, 238, 222, 228, 216, 200, 66]

You don’t have to use lambda expressions—it works just fine with named functions as well:

>>> map(chr, numbers)
['H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd', '!']

The built-in function chr takes a number as its only parameter and returns the character
corresponding to that number (the so-called ordinal number, which is really its ASCII code).
The reverse of chr is ord:

>>> map(ord, 'Hello, world!')
[72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]

Because strings are just sequences of characters, you can use map directly. Note that the
result is a list, not another string. See the following section for a note about map, filter, and list
comprehensions.

filter
The filter function returns a new list in which the elements that you don’t want have been
filtered out. Or, to put it another way, it returns exactly those you do want. You supply filter
with a function that returns a Boolean (truth) value for a given sequence element. If the function
returns true, the element is part of the returned sequence; if it returns false, the element is not
included in the returned sequence. (The original sequence is not modified.) For example, you
might want to retain only the even numbers from the list numbers:

1. The name “lambda” comes from the Greek letter λ, which is used in mathematics to indicate an
anonymous function.

C H A P T E R 6 ■ A B S T R A C T I O N 135

>>> numbers = [72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]
>>> filter(lambda n: n % 2 == 0, numbers)
[72, 108, 108, 44, 32, 114, 108, 100]

The lambda expression simply checks whether the remainder of a given number when
divided by 2 is zero (which is another way of saying that the number is even).

Now, map and filter can be very useful, but they were added to the language before list
comprehension came along. If you think about it, anything that map and filter can accomplish
can also be done with list comprehensions:

>>> [chr(n) for n in numbers] # characters corresponding to numbers
['H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd', '!']
>>> [ord(c) for c in 'Hello, world!'] # numbers corresponding to characters
[72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]
>>> [n for n in numbers if n % 2 == 0] # filters out the odd numbers
[72, 108, 108, 44, 32, 114, 108, 100]

In my opinion, list comprehensions are, in most cases, more readable than using map and
filter. I won’t go so far as to say that you always should use list comprehensions: it’s largely a
matter of taste, and the demands of each specific programming task.

■Note If it is speed you are after, you may want to go with map and filter after all. When used with built-
in functions, they are faster than list comprehensions.

reduce
But what about the third function, reduce? This is a tricky one, and I confess that I rarely use it.
But people used to functional programming may find it useful. It combines the first two elements
of a sequence with a given function, and combines the result with the third element, and so on
until the entire sequence has been processed and a single result remains. For example, if you
wanted to sum all the numbers of a sequence, you could use reduce with lambda x, y: x+y (still
using the same numbers):2

>>> numbers = [72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]
>>> reduce(lambda x, y: x+y, numbers)
1161

In this example, all the numbers of numbers are summed by successively adding the current
sum and the next number in the sequence. What actually happens is very close to this:

sum = 0
for number in numbers:
 sum = sum + number

2. Actually, instead of this lambda function, you could import the function add from the operator module,
which has a function for each of the built-in operators. Using functions from the operator module is
always more efficient than using your own functions.

136 C H A P T E R 6 ■ A B S T R A C T I O N

In the original example, reduce takes care of the sum and the looping, while the lambda
represents the expression sum + number. Let’s take a peek at what’s happening. The following
defines a function for adding numbers that also prints out its arguments:

def peek_sum(x, y):
 print 'Adding', x, 'and', y
 return x + y

Let’s use this with reduce:

>>> reduce(peek_sum, [1, 2, 3, 4, 5])
Adding 1 and 2
Adding 3 and 3
Adding 6 and 4
Adding 10 and 5
15

What happens is that reduce first adds 1 and 2, then adds the result with 3, and so on until
all the elements have been added. Finally, after printing out all the operations it goes through,
the sum (15) is returned.

■Note There is a built-in function called sum, which returns the sum of a sequence. (It cannot be used to
join a sequence of strings.)

As another example, let’s imagine that you could only use max with two arguments (in fact, it
works with entire sequences) and you wanted to use it on a sequence. Then you could use reduce:

>>> reduce(max, numbers)
119

The max function is used here to return the maximum of two numbers, and instead of
keeping track of a sum, reduce keeps track of the maximum so far. Let’s take another peek
under the hood:

def peek_max(x, y):
 print 'Finding max of', x, 'and', y
 return max(x, y)

Just like peek_sum, peek_max prints out its arguments when it is executed. Let’s use it
with reduce:

>>> reduce(peek_max, [3, 5, 2, 6, 9, 2])
Finding max of 3 and 5
Finding max of 5 and 2
Finding max of 5 and 6
Finding max of 6 and 9
Finding max of 9 and 2
9

C H A P T E R 6 ■ A B S T R A C T I O N 137

As you can see, the left argument is always the largest number found so far, while the right
argument is the next number in the sequence.

■Note You have seen that reduce can be replaced by a for loop, but it cannot be reduced (pun intended)
to a list comprehension because it doesn’t return a list.

apply
Before leaving the subject of functional programming, I’ll touch upon the built-in function
apply. It takes a function as an argument and calls it. You may also optionally supply a tuple of
positional parameters and a dictionary of keyword arguments. You use this if you have a tuple
(or dictionary) of arguments and want to apply a function to it:

>>> def rectangleArea(width, height):
 return width * height

>>> rectangle = 20, 30
>>> apply(rectangleArea, rectangle)
600

However, this function is a bit outdated now that you can simply use the nifty little stars to
unpack the arguments (as discussed earlier in this chapter, in the section “Collecting
Parameters”):

>>> rectangleArea(*rectangle)
600

Even though you’ll probably rarely use apply, it has been used extensively in older programs,
and you never know when you’ll have to read someone else’s code.

A Quick Summary
In this chapter, you’ve learned several things about abstraction in general, and functions in
particular:

Abstraction. Abstraction is the art of hiding unnecessary details. You can make your
program more abstract by defining functions that handle the details.

Function definition. Functions are defined with the def statement. They are blocks of
statements that receive values (parameters) from the “outside world” and may return one
or more values as the result of their computation.

Parameters. Functions receive what they need to know in the form of parameters—vari-
ables that are set when the function is called. There are two types of parameters in Python,
positional parameters and keyword parameters. Parameters can be made optional by
giving them default values.

138 C H A P T E R 6 ■ A B S T R A C T I O N

Scopes. Variables are stored in scopes (also called namespaces). There are two main
scopes in Python—the global scope and the local scope. Scopes may be nested.

Recursion. A function can call itself—and if it does, it’s called recursion. Everything you
can do with recursion can also be done by loops, but sometimes a recursive function is
more readable.

Functional programming. Python has some facilities for programming in a functional
style. Among these are lambda expressions and the map, filter, and reduce functions.

New Functions in This Chapter

What Now?
The next chapter takes abstractions to another level, through object-oriented programming.
You learn how to make your own types (or classes) of objects to use alongside those provided
by Python (such as strings, lists, and dictionaries), and you learn how this enables you to write
better programs. Once you’ve worked your way through the next chapter, you’ll be able to write
some really big programs without getting lost in the source code.

Function Description

map(func, seq [, seq, ...]) Applies the function to all the elements in the sequences

filter(func, seq) Returns a list of those elements for which the function
is true

reduce(func, seq [, initial]) Equivalent to func(func(func(seq[0], seq[1]),
seq[2]), ...)

sum(seq) Returns the sum of all the elements of seq

apply(func[, args[, kwargs]]) Calls the function, optionally supplying arguments

139

■ ■ ■

C H A P T E R 7

More Abstraction

In the previous chapters, you looked at Python’s main built-in object types (numbers, strings,
lists, tuples, and dictionaries); you peeked at the wealth of built-in functions and standard
libraries; you even created your own functions. Now, only one thing seems to be missing—
making your own objects. And that’s what you do in this chapter.

You may wonder how useful this is. It might be cool to make your own kinds of objects, but
what would you use them for? With all the dictionaries and sequences and numbers and strings
available, can’t you just use them and make the functions do the job? Certainly. But making
your own objects (and especially types or classes of objects) is a central concept in Python—so
central, in fact, that Python is called an object-oriented language (along with SmallTalk, C++,
Java, and many others). In this chapter, you learn how to make objects, and you learn about
polymorphism and encapsulation, methods and attributes, superclasses and inheritance—
you learn a lot. So let’s get started.

■Note If you’re already familiar with the concepts of object-oriented programming, you probably know
about constructors. Constructors will not be dealt with in this chapter; for a full discussion, see Chapter 9.

The Magic of Objects
In object-oriented programming, the term object loosely means a collection of data (attributes)
with a set of methods for accessing and manipulating those data. There are several reasons for
using objects instead of sticking with global variables and functions. Some of the most important
benefits of objects include the following:

• Polymorphism

• Encapsulation

• Inheritance

Roughly, these terms mean that you can use the same operations on objects of different
classes, and they will work as if “by magic” (polymorphism); you hide unimportant details of
how objects work from the outside world (encapsulation), and you can create specialized
classes of objects from general ones (inheritance).

140 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

In many presentations of object-oriented programming, the order of these concepts is
different. Encapsulation and inheritance are presented first, and then they are used to model
real-world objects. That’s all fine and dandy, but in my opinion, the most interesting feature of
object-oriented programming is polymorphism. It is also the feature most people (in my
experience) get confused by. Therefore I’ll start with polymorphism, and show that this concept
alone should be enough to make you like object-oriented programming.

Polymorphism
The term polymorphism is derived from a Greek word meaning “having multiple forms.” Basically,
that means that even if you don’t know what kind of object a variable refers to, you may still be
able to perform operations on it that will work differently depending on the type (or class) of
the object. For example, assume that you are creating an online payment system for a commercial
Web site that sells food. Your program receives a “shopping cart” of goods from another part of
the system (or other similar systems that may be designed in the future)—all you need to worry
about is summing up the total and billing some credit card.

Your first thought may be to specify exactly how the goods must be represented when your
program receives them. For example, you may want to receive them as tuples, like this:

('SPAM', 2.50)

If all you need is a descriptive tag and a price, this is fine. But it’s not very flexible. Let’s say
that some clever person starts an auctioning service as part of the Web site—where the price of
an item is gradually reduced until somebody buys it. It would be nice if the user could put the
object in his or her shopping cart and proceed to the checkout (your part of the system) and
just wait until the price was right before pressing the Pay button.

But that wouldn’t work with the simple tuple scheme. For that to work, the object would
have to check its current price (through some network magic) each time your code asked for
it—it couldn’t be frozen like in a tuple. You can solve that; just make a function:

Don't do it like this...
def getPrice(object):
 if isinstance(object, tuple):
 return object[1]
 else:
 return magic_network_method(object)

■Note The type/class checking and use of isinstance here is meant to illustrate a point—namely that
type checking isn’t generally a satisfactory solution. Avoid type checking if you possibly can. The function
isinstance is described in the section “Investigating Inheritance,” later in this chapter.

In the preceding code, I use the functions type and isinstance to find out whether the
object is a tuple. If it is, its second element is returned; otherwise, some “magic” network
method is called.

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 141

Assuming that the network stuff already exists, you’ve solved the problem—for now. But
this still isn’t very flexible. What if some clever programmer decides that she’ll represent the
price as a string with a hex value, stored in a dictionary under the key 'price'? No problem: you
just update your function:

Don't do it like this...
def getPrice(object):
 if isinstance(object, tuple):
 return object[1]
 elif isinstance(object, dict):
 return int(object['price'])
 else:
 return magic_network_method(object)

Now, surely you must have covered every possibility? But let’s say someone decides to add
a new type of dictionary with the price stored as under a different key. What do you do now?
You could certainly update getPrice again, but for how long could you continue doing that?
Every time someone wanted to implement some priced object differently, you would have to
reimplement your module. But what if you already sold your module and moved on to other,
cooler projects—what would the client do then? Clearly this is an inflexible and impractical
way of coding the different behaviors.

So what do you do instead? You let the objects handle the operation themselves. It sounds
really obvious, but think about how much easier things will get. Every new object type can
retrieve or calculate its own price and return it to you—all you have to do is ask for it.

And this is where polymorphism (and, to some extent, encapsulation) enters the scene.
You receive an object and have no idea of how it is implemented—it may have any one of many
“shapes.” All you know is that you can ask for its price, and that’s enough for you. The way you
do that should be familiar:

>>> object.getPrice()
2.5

Functions that are bound to object attributes like this are called methods. You’ve already
encountered them in the form of string, list, and dictionary methods. There, too, you saw some
polymorphism:

>>> 'abc'.count('a')
1
>>> [1, 2, 'a'].count('a')
1

If you had a variable x, you wouldn’t have to know whether it was a string or a list to call the
count method—it would work regardless (as long as you supplied a single character as the
argument).

Let’s do an experiment. The standard library random contains a function called choice that
selects a random element from a sequence. Let’s use that to give your variable a value:

>>> from random import choice
>>> x = choice(['Hello, world!', [1, 2, 'e', 'e', 4]])

142 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

After performing this, x can either contain the string 'Hello, world!', or the list
[1, 2, 'e', 'e', 4]—you don’t know, and you don’t have to worry about it. All you care
about is how many times you find “e” in x, and you can find that out regardless of whether
x is a list or a string. By calling the count method as before, you find out just that:

>>> x.count('e')
2

In this case, it seems that the list won out. But the point is that you didn’t have to check:
Your only requirement was that x had a method called count that took a single character as an
argument and returned an integer. If someone else had made their own class of objects that
had this method, it wouldn’t matter to you—you could use their objects just as well as the
strings and lists.

Polymorphism Comes in Many Forms

Polymorphism is at work every time you can “do something” to an object without having to
know exactly what kind of object it is. This doesn’t only apply to methods—we’ve already used
polymorphism a lot in the form of built-in operators and functions. Consider the following:

>>> 1+2
3
>>> 'Fish'+'license'
'Fishlicense'

Here the plus operator works fine for both numbers (integers in this case) and strings (as
well as other types of sequences). To illustrate the point, let’s say you wanted to make a function
called add that added two things together. You could simply define it like this (equivalent to,
but less efficient than, the add function from the operator module):

def add(x, y):
 return x+y

This would also work with many kinds of arguments:

>>> add(1, 2)
3
>>> add('Fish', 'license')
'Fishlicense'

This might seem silly, but the point is that the arguments can be anything that supports
addition.1 If you want to write a function that prints a message about the length of an object,
all that’s required is that it have a length (that the len function work on it):

def length_message(x):
 print "The length of", repr(x), "is", len(x)

1. Note that these objects have to support addition with each other. So calling add(1, 'license') would
not work.

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 143

■Note As described in Chapter 1, repr gives a string representation of a Python value.

As you can see, the function also uses repr, but repr is one of the grand masters of poly-
morphism—it works with anything. Let’s see how:

>>> length_message('Fnord')
The length of 'Fnord' is 5
>>> length_message([1, 2, 3])
The length of [1, 2, 3] is 3

Many functions and operators are polymorphic—probably most of yours will be, too, even
if you don’t intend them to be. Just by using polymorphic functions and operators, the poly-
morphism “rubs off.” In fact, virtually the only thing you can do to destroy this polymorphism
is to do explicit type checking with functions such as type, isinstance, and issubclass. If you
can, you really should avoid destroying polymorphism this way. What matters should be that
an object acts the way you want, not whether it has the right type (or class) or not.

■Note The form of polymorphism discussed here, which is so central to the Python way of programming,
is sometimes called “duck typing.” The term derives from the phrase, “If it quacks like a duck...”

Encapsulation
Encapsulation is the principle of hiding unnecessary details from the rest of the world. This
may sound like polymorphism—there, too, you use an object without knowing its inner details.
The two concepts are similar because they are both principles of abstraction—they both help
you deal with the components of your program without caring about unnecessary detail, just
like functions do.

But encapsulation isn’t the same as polymorphism. Polymorphism enables you to call the
methods of an object without knowing its class (type of object). Encapsulation enables you to
use the object without worrying about how it’s constructed. Does it still sound similar? Let’s
construct an example with polymorphism, but without encapsulation. Assume that you have a
class called OpenObject (you learn how to create classes later in this chapter):

>>> o = OpenObject() # This is how we create objects...
>>> o.setName('Sir Lancelot')
>>> o.getName()
'Sir Lancelot'

You create an object (by calling the class as if it were a function) and bind the variable o to
it. You can then use the methods setName and getName (assuming that they are methods that are
supported by the class OpenObject). Everything seems to be working perfectly. However, let’s
assume that o stores its name in the global variable globalName:

>>> globalName

144 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

'Sir Lancelot'

This means that you have to worry about the contents of globalName when you use instances
(objects) of the class OpenObject. In fact, you have to make sure that nobody changes it:

>>> globalName = 'Sir Gumby'
>>> o.getName()
'Sir Gumby'

Things get even more problematic if you try to create more than one OpenObject because
they will all be messing with the same variable:

>>> o1 = OpenObject()
>>> o2 = OpenObject()
>>> o1.setName('Robin Hood')
>>> o2.getName()
'Robin Hood'

As you can see, setting the name of one automatically sets the name of the other. Not
exactly what you want.

Basically, you want to treat objects as abstract. When you call a method you don’t want to
worry about anything else, such as not disturbing global variables. So how can you “encapsu-
late” the name within the object? No problem. You make it an attribute. Attributes are variables
that are a part of the object, just like methods; actually methods are almost like attributes
bound to functions. (You’ll see an important difference between methods and functions in the
section “Attributes, Functions, and Methods,” later in this chapter.)

If you rewrite the class to use an attribute instead of a global variable, and you rename it
ClosedObject, it works like this:

>>> c = ClosedObject()
>>> c.setName('Sir Lancelot')
>>> c.getName()
'Sir Lancelot'

So far, so good. But for all you know, this could still be stored in a global variable. Let’s
make another object:

>>> r = ClosedObject()
>>> r.setName('Sir Robin')
r.getName()
'Sir Robin'

Here we can see that the new object has its name set properly. Well, we expected that. But
what has happened to the first object now?

>>> c.getName()
'Sir Lancelot'

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 145

The name is still there! What I have done is give the object its own state. The state of an
object is described by its attributes (like its name, for example). The methods of an object may
change these attributes. So it’s like lumping together a bunch of functions (the methods) and
giving them access to some variables (the attributes) where they can keep values stored
between function calls.

In Private

But that’s not all. In fact, you can access the attributes of an object from the “outside,” too:

>>> c.name
'Sir Lancelot'
>>> c.name = 'Sir Gumby'
>>> c.getName()
'Sir Gumby'

Some programmers are okay with this, but some (like the creators of SmallTalk, a language
where attributes of an object are only accessible to the methods of the same object) feel that it
breaks with the principle of encapsulation. They believe that the state of the object should be
completely hidden (inaccessible) to the outside world. You might wonder why they take such
an extreme stand. Isn’t it enough that each object manages its own attributes? Why should you
hide them from the world? After all, if you just used the name attribute directly in ClosedObject,
you wouldn’t have to make the setName and getName methods.

The point is that other programmers may not know (and perhaps shouldn’t know) what’s
going on inside your object. For example, ClosedObject may send an email to some adminis-
trator every time an object changes its name. This could be part of the setName method. But
what happens when you set c.name directly? Nothing. No email is sent. To avoid this sort of
thing, you have private attributes, attributes that are not accessible outside the object but only
through accessor methods such as getName and setName.

■Note In Chapter 9, you learn about properties, a powerful alternative to accessors.

Python doesn’t support privacy directly, but relies on the programmer to know when it is
safe to modify an attribute from the outside. After all, you ought to know how to use an object
before using it. It is, however, possible to achieve something like private attributes with a little
trickery.

To make a method or attribute private (inaccessible from the outside), simply start its
name with two underscores:

class Secretive:
 def __inaccessible(self):
 print "Bet you can't see me..."
 def accessible(self):
 print "The secret message is:"
 self.__inaccessible()

146 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

Now __inaccessible is inaccessible to the outside world, while it can still be used inside
the class (for example, from accessible):

>>> s = Secretive()
>>> s.__inaccessible()
Traceback (most recent call last):
 File "<pyshell#112>", line 1, in ?
 s.__inaccessible()
AttributeError: Secretive instance has no attribute '__inaccessible'
>>> s.accessible()
The secret message is:
Bet you can't see me...

Although the double underscores are a bit strange, this seems like a standard private
method, as found in other languages. What’s not so standard is what actually happens. Inside
a class definition, all names beginning with a double underscore are “translated” by adding a
single underscore and the class name to the beginning:

>>> Secretive._Secretive__inaccessible
<unbound method Secretive.__inaccessible>

If you know how this works behind the scenes, it is still possible to access private methods
outside the class, even though you’re not supposed to:

>>> s._Secretive__inaccessible()
Bet you can't see me...

So, in short, you can’t be sure that others won’t access the methods and attributes of your
objects, but this sort of name-mangling is a pretty strong signal that they shouldn’t.

If you don’t want the name-mangling effect, but you still want to send a signal for other
objects to stay away, you can use a single initial underscore. This is mostly just a convention,
but has some practical effects. For example, names with an initial underscore aren’t imported
with starred imports (from module import *).

■Note Some languages support several degrees of privacy for its member variables (attributes). Java, for
example, has four different levels. Python doesn’t really have an equivalent privacy support, although single
and double initial underscores do to some extent give you two levels of privacy.

Inheritance
Inheritance is another way of dealing with laziness (in the positive sense). Programmers want
to avoid typing the same code more than once. We avoided that earlier by making functions,
but now I will address a more subtle problem. What if you have a class already, and you want

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 147

to make one that is very similar? Perhaps one that adds only a few methods? When making this
new class, you don’t want to have to copy all the code from the old one over to the new one. You
may already have a class called Shape, which knows how to draw itself on the screen.

Now you want to make a class called Rectangle, which also knows how to draw itself on the
screen, but which can, in addition, calculate its own area. You wouldn’t want to do all the work
of making a new draw method when Shape has one that works just fine. So what do you do? You
let Rectangle inherit the methods from Shape. You can do this in such a way that when draw is
called on a Rectangle object, the method from the Shape class is called automatically. I go into
the details of this a bit later in this chapter.

Classes and Types
By now, you’re getting a feeling for what classes are—or you may be getting impatient for me
to tell you how to make the darn things. Before jumping into the technicalities, let’s have a look
at what a class is, and how it is different from (or similar to) a type.

What Is a Class, Exactly?
I’ve been throwing around the word “class” a lot, using it more or less synonymously with words
such as “kind” or “type.” In many ways that’s exactly what a class is—a kind of object. All objects
belong to one class and are said to be instances of that class.

So, for example, if you look outside your window and see a bird, that bird is an instance of
the class “birds.” This is a very general (abstract) class that has several subclasses: your bird
might belong to the subclass “larches.” You can think of the class “birds” as the set of all birds,
while the class “larches” is just a subset of that. When the objects belonging to one class form a
subset of the objects belonging to another class, the first is called a subclass of the second. Thus,
“larches” is a subclass of “birds.” Conversely, “birds” is a superclass of “larches.”

■Note In everyday speech, we denote classes of objects with plural nouns such as “birds” or “larches.”
In Python, it is customary to use singular, capitalized nouns such as Bird and Larch.

When stated like this, subclasses and superclasses are easy to understand. But in object-
oriented programming, the subclass relation has important implications because a class is
defined by what methods it supports. All the instances of a class have these methods, so all the
instances of all subclasses must also have them. Defining subclasses is then only a matter of
defining more methods (or, perhaps, overriding some of the existing ones).

For example, Bird might supply the method fly while Penguin (a subclass of Bird) might
add the method eatFish. When making a penguin class, you would probably also want to over-
ride a method of the superclass, namely the fly method. In a Penguin instance, this method
should either do nothing, or possibly raise an exception (see Chapter 8), given that penguins
can’t fly.

148 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

TYPES AND CLASSES THEN AND NOW

In older versions of Python, there was a sharp distinction between types and classes. Built-in objects had
types, your custom objects had classes. You could create classes, but not types. In recent versions of Python,
things are starting to change. The division between basic types and classes is blurring. You can now make
subclasses (or subtypes) of the built-in types, and the types are behaving more like classes. Chances are you
won’t notice this change much until you become more familiar with the language. If you’re interested, you can
find more information on the topic in Chapter 9.

Making Your Own Classes
Finally! You get to make your own classes! Okay, enough enthusiasm. Let’s get down to it—
here is a simple class:

class Person:
 def setName(self, name):
 self.name = name
 def getName(self):
 return self.name
 def greet(self):
 print "Hello, world! I'm %s." % self.name

This example contains three method definitions, which are like function definitions
except that they are written inside a class statement. Person is, of course, the name of the class.
The class statement creates its own namespace where the functions are defined. (See the
section “The Class Namespace” later in this chapter.) All this seems fine, but you may wonder
what this self parameter is. It refers to the object itself. And what object is that? Let’s make a
couple of instances and see:

>>> foo = Person()
>>> bar = Person()
>>> foo.setName('Luke Skywalker')
>>> bar.setName('Anakin Skywalker')
>>> foo.greet()
Hello, world! I'm Luke Skywalker.
>>> bar.greet()
Hello, world! I'm Anakin Skywalker.

Okay, so this example may be a bit obvious, but perhaps it clarifies what self is. When I
call setName and greet on foo, foo itself is automatically passed as the first parameter in each
case—the parameter that I have so fittingly called self. You may, in fact, call it whatever you
like, but because it is always the object itself, it is almost always called self, by convention.

It should be obvious why self is useful, and even necessary here. Without it, none of the
methods would have access to the object itself, the object whose attributes they are supposed
to manipulate.

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 149

As before, the attributes are also accessible from the outside:

>>> foo.name
'Luke Skywalker'
>>> bar.name = 'Yoda'
>>> bar.greet()
Hello, world! I'm Yoda.

Attributes, Functions, and Methods
The self parameter (mentioned in the previous section) is, in fact, what distinguishes methods
from functions. Methods (or, more technically, bound methods) have their first parameter
bound to the instance they belong to: you don’t have to supply it. So while you can certainly
bind an attribute to a plain function, it won’t have that special self parameter:

>>> class Class:
 def method(self):
 print 'I have a self!'

>>> def function():
 print "I don't..."

>>> instance = Class()
>>> instance.method()
I have a self!
>>> instance.method = function
>>> instance.method()
I don't...

Note that the self parameter is not dependent on calling the method the way I’ve done
until now, as instance.method. You’re free to use another variable that refers to the same method:

>>> class Bird:
 song = 'Squaawk!'
 def sing(self):
 print self.song

>>> bird = Bird()
>>> bird.sing()
Squaawk!
>>> birdsong = bird.sing
>>> birdsong()
Squaawk!

Even though the last method call looks exactly like a function call, the variable birdsong
refers to the bound method bird.sing, which means that it still has access to the self parameter.

150 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

■Note In Chapter 9, you see how classes can call methods in their superclasses (more specifically, the
constructors of their superclasses). Those methods are called directly on the class; they haven’t bound their
self parameter to anything and are therefore called unbound methods.

Throwing Methods Around
In the previous section, I showed how you could use a bound method just like a function
without losing the self parameter. That means that you can use methods in many of the fancy
ways that I’ve used functions previously, with handy tools such as map, filter, and reduce (see
the section “Throwing Functions Around” in Chapter 6). In this section, I provide some examples
of these capabilities. They should all be fairly self-explanatory.

Let’s start by creating a class:

class FoodExpert:

 def init(self):
 self.goodFood = []

 def addGoodFood(self, food):
 self.goodFood.append(food)

 def likes(self, x):
 return x in self.goodFood

 def prefers(self, x, y):
 x_rating = self.goodFood.index(x)
 y_rating = self.goodFood.index(y)
 if x_rating > y_rating:
 return y
 else:
 return x

This class has more code than earlier examples, but it is still pretty simple. It is meant to
represent some sort of food expert (as the name implies) who likes only some types of food, and
likes some more than others.

The init method simply initializes the objects by giving them an attribute called goodFood
containing an empty list. The addGoodFood method adds a type of food to the list, where the first
food type added is the expert’s favorite, the next one is the second choice, and so on. The likes
method simply checks whether the expert likes a certain type of food (whether it has been
added to goodFood), and finally the prefers method is given two food types (both of which must
be liked) and returns the preferred one (based on their position in goodFood).

Now, let’s play. In the following example, a FoodExpert is created and its taste buds
initialized:

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 151

>>> f = FoodExpert()
>>> f.init()
>>> map(f.addGoodFood, ['SPAM', 'Eggs', 'Bacon', 'Rat', 'Spring Surprise'])
[None, None, None, None, None]

The first two lines instantiate FoodExpert and initialize the instance, which is assigned to f.
The map call simply uses the method addGoodFood with its self parameter bound to f. Because
this method doesn’t return anything, the result is a list filled with None. However, a side effect is
that f has been updated:

>>> f.goodFood
['SPAM', 'Eggs', 'Bacon', 'Rat', 'Spring Surprise']

Let’s use this expert to give us a list of recommendations:

>>> menu = ['Filet Mignon', 'Pasta', 'Pizza', 'Eggs', 'Bacon', 'Tomato', 'SPAM']
>>> rec = filter(f.likes, menu)
>>> rec
['Eggs', 'Bacon', 'SPAM']

What I did here was simply apply f.likes as a filter to a menu; the dishes the expert didn’t
like were simply discarded. But what if you want to find out which of these dishes the expert
would prefer? I once again turn to the trusty (if rarely used) reduce:

>>> reduce(f.prefers, rec)
'SPAM'

This basically works just like the example using reduce with max in Chapter 6 (in the section
“reduce”).

If I had used a different expert, initialized with different preferences, of course, I’d get
completely different results, even though the method definitions would be exactly the same. This
is the primary difference between standard functional programming and this quasi-functional
programming using bound methods; the methods have access to a state that can be used to
“customize” them.

■Note You can pass state along with a function like this by using nested scopes as well, as discussed in
the previous chapter.

The Class Namespace
The following two statements are (more or less) equivalent:

def foo(x): return x*x
foo = lambda x: x*x

152 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

Both create a function that returns the square of its argument, and both bind the variable
foo to that function. The name foo may be defined in the global (module) scope, or it may be
local to some function or method. The same thing happens when you define a class; all the
code in the class statement is executed in a special namespace—the class namespace. This
namespace is accessible later by all members of the class. Not all Python programmers know
that class definitions are simply code sections that are executed, but it can be useful information.
For example, you aren’t restricted to def statements:

>>> class C:
 print 'Class C being defined...'

Class C being defined...
>>>

Okay, that was a bit silly. But consider the following:

class MemberCounter:
 members = 0
 def init(self):
 MemberCounter.members += 1

>>> m1 = MemberCounter()
>>> m1.init()
>>> MemberCounter.members
1
>>> m2 = MemberCounter()
>>> m2.init()
>>> MemberCounter.members
2

In the preceding code, a variable is defined in the class scope, which can be accessed by all
the members (instances), in this case to count the number of class members. Note the use of
init to initialize all the instances: I’ll automate that in Chapter 9.

This class scope variable is accessible from every instance as well, just as methods are:

>>> m1.members
2
>>> m2.members
2

What happens when you rebind the members attribute in an instance?

>>> m1.members = 'Two'
>>> m1.members
'Two'
>>> m2.members
2

The new members value has been written into an attribute in m1, shadowing the classwide
variable. This mirrors the behavior of local and global variables.

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 153

Specifying a Superclass
As I discussed earlier in the chapter, subclasses expand on the definitions in their superclasses.
You indicate the superclass in a class statement by writing it in parentheses after the class name:

class Filter:
 def init(self):
 self.blocked = []
 def filter(self, sequence):
 return [x for x in sequence if x not in self.blocked]

class SPAMFilter(Filter): # SPAMFilter is a subclass of Filter
 def init(self): # Overrides init method from Filter superclass
 self.blocked = ['SPAM']

Filter is a general class for filtering sequences. Actually it doesn’t filter out anything:

>>> f = Filter()
>>> f.init()
>>> f.filter([1, 2, 3])
[1, 2, 3]

The usefulness of the Filter class is that it can be used as a base class (superclass) for other
classes, such as SPAMFilter, which filters out 'SPAM' from sequences:

>>> s = SPAMFilter()
>>> s.init()
>>> s.filter(['SPAM', 'SPAM', 'SPAM', 'SPAM', 'eggs', 'bacon', 'SPAM'])
['eggs', 'bacon']

Note two important points in the definition of SPAMFilter:

• I override the definition of init from Filter by simply providing a new definition.

• The definition of the filter method carries over (is inherited) from Filter, so you don’t
have to write the definition again.

The second point demonstrates why inheritance is useful: I can now make a number of
different filter classes, all subclassing Filter, and for each one I can simply use the filter
method I have already implemented. Talk about useful laziness...

Investigating Inheritance
If you want to find out whether a class is a subclass of another, you can use the built-in method
issubclass:

>>> issubclass(SPAMFilter, Filter)
True
>>> issubclass(Filter, SPAMFilter)
False

154 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

If you have a class and want to know its base classes, you can access its special attribute
__bases__:

>>> SPAMFilter.__bases__
(<class __main__.Filter at 0x171e40>,)
>>> Filter.__bases__
()

In a similar manner, you can check whether an object is an instance of a class by using
isinstance:

>>> s = SPAMFilter()
>>> isinstance(s, SPAMFilter)
True
>>> isinstance(s, Filter)
True
>>> isinstance(s, str)
False

■Tip As mentioned before, isinstance is best left unused most of the time. Relying on polymorphism is
almost always better.

As you can see, s is a (direct) member of the class SPAMFilter, but it is also an indirect
member of Filter because SPAMFilter is a subclass of Filter. Another way of putting it is that
all SPAMFilters are Filters. As you can see in the last example, isinstance also works with types,
such as the string type (str).

If you just want to find out which class an object belongs to, you can use the __class__
attribute:

>>> s.__class__
<class __main__.SPAMFilter at 0x1707c0>

Multiple Superclasses
I’m sure you noticed a small detail in the previous section that may have seemed odd: the
plural form in __bases__. I said you could use it to find the base classes of a class, which implies
that it may have more than one. This is, in fact, the case. To show how it works, let’s create a few
classes:

class Calculator:
 def calculate(self, expression):
 self.value = eval(expression)

class Talker:
 def talk(self):
 print 'Hi, my value is', self.value

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 155

class TalkingCalculator(Calculator, Talker):
 pass

The subclass (TalkingCalculator) does nothing by itself; it inherits all its behavior from its
superclasses. The point is that it inherits both calculate from Calculator and talk from Talker,
making it a talking calculator:

>>> tc = TalkingCalculator()
>>> tc.calculate('1+2*3')
>>> tc.talk()
Hi, my value is 7

This is called multiple inheritance, and can be a very powerful tool.

■Note When using multiple inheritance, there is one thing you should look out for. If a method is imple-
mented differently by two or more of the superclasses, you must be careful about the order of these superclasses
(in the class statement): The methods in the earlier classes override the methods in the later ones. So if
the Calculator class in the preceding example had a method called talk, it would override (and make
inaccessible) the talk method of the Talker. Reversing their order, like this:

class TalkingCalculator(Talker, Calculator): pass

would have made the talk method of the Talker accessible. The normal way of handling multiple inheritance
is to have one “substantial” base class, and to add so-called mix-in classes that implement a few methods,
“modifying” the inheritance. If the mix-ins are to override something in the base class, they must be put first,
and, by convention, they usually are anyway—just in case. If the superclasses share a common superclass,
the order in which the superclasses are visited while looking for a given attribute or method is called the
method resolution order (MRO), and follows a rather complicated algorithm. Luckily, it works very well, so you
probably needn’t worry about it.

Interfaces and Introspection
The “interface” concept is related to polymorphism. When you handle a polymorphic object,
you only care about its interface (or “protocol”)—the methods and attributes known to the
world. In Python, you don’t explicitly specify which methods an object needs to have to be
acceptable as a parameter. For example, you don’t write interfaces explicitly (as you do in Java);
you just assume that an object can do what you ask it to. If it can’t, the program will fail.

■Note There is some talk of adding explicit interface functionality to Python. For more information,
take a look at Python Enhancement Proposal number 245 (http://www.python.org/peps/
pep-0245.html).

Usually, you simply require that objects conform to a certain interface (in other words,
implement certain methods), but if you want to, you can be quite flexible in your demands.

156 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

Instead of just calling the methods and hoping for the best, you can check whether the required
methods are present—and if not, perhaps do something else:

>>> hasattr(tc, 'talk')
True
>>> hasattr(tc, 'fnord')
False

In the preceding code, you find that tc (a TalkingCalculator, as described earlier in this
chapter) has the attribute talk (which contains a method), but not the attribute fnord. If you
wanted to, you could even check whether the talk attribute was callable:

>>> callable(getattr(tc, 'talk', None))
True
>>> callable(getattr(tc, 'fnord', None))
False

Note that instead of using hasattr in an if statement and accessing the attribute directly,
I’m using getattr, which allows me to supply a default value (in this case None) that will be used
if the attribute is not present. I then use callable on the returned object.

■Note The inverse of getattr is setattr, which can be used to set the attributes of an object:

>>> setattr(tc, 'name', 'Mr. Gumby')
>>> tc.name
'Mr. Gumby'

If you want to see all the values stored in an object, you can examine its __dict__ attribute.
And if you really want to find out what an object is made of, you should take a look at the inspect
module. It is meant for fairly advanced users who want to make object browsers (programs that
enable you to browse Python objects in a graphical manner) and other similar programs that
require such functionality. For more information on exploring objects and modules, see the
section “Exploring Modules” in Chapter 10.

Some Thoughts on Object-Oriented Design
Many books have been written about object-oriented program design, and although that’s not
the focus of this book, I’ll give you some pointers:

• Gather what belongs together. If a function manipulates a global variable, the two of
them might be better off in a class, as an attribute and a method.

• Don’t let objects become too intimate. Methods should mainly be concerned with the
attributes of their own instance. Let other instances manage their own state.

• Keep it simple. Keep your methods small. As a rule of thumb, it should be possible to
read (and understand) each of your methods in 30 seconds.

C H A P T E R 7 ■ M O R E A B S T R A C T I O N 157

When determining which classes you need and what methods they should have, you may
try something like this:

1. Write down a description of your problem (what should the program do?). Underline all
the nouns, verbs, and adjectives.

2. Go through the nouns, looking for potential classes.

3. Go through the verbs, looking for potential methods.

4. Go through the adjectives, looking for potential attributes.

5. Allocate methods and attributes to your classes.

Now you have a first sketch of an object-oriented model. You may also want to think about
what relationships (such as inheritance) the classes and objects will have. To refine your model,
you can do the following:

6. Write down (or dream up) a set of use cases—scenarios of how your program may be
used. Try to cover all the functionality.

7. Think through every use case step by step, making sure that everything you need is
covered by your model. If something is missing, add it. If something isn’t quite right,
change it. Continue until you are satisfied.

When you have a model you think will work, you can start hacking away. Chances are
you’ll have to revise your model—or revise parts of your program. Luckily, that’s easy in Python,
so don’t worry about it. Just dive in. (If you’d like some more guidance in the ways of object-
oriented programming, check out the list of suggested books in Chapter 19.)

A Quick Summary
This chapter has given you more than just information about the Python language; it has
introduced you to several concepts that may have been completely foreign to you. Let me try
to summarize them for you:

Objects. An object consists of attributes and methods. An attribute is merely a variable
that is part of an object, and a method is more or less a function that is stored in an
attribute. One difference between (bound) methods and other functions is that methods
always receive the object they are part of as their first argument, usually called self.

Classes. A class represents a set (or kind) of objects, and every object (instance) has a class.
The class’s main task is to define the methods its instances will have.

Polymorphism. Polymorphism is the characteristic of being able to treat objects of different
types and classes alike—you don’t have to know which class an object belongs to in order
to call one of its methods.

Encapsulation. Objects may hide (or encapsulate) their internal state. In some languages
this means that their state (their attributes) is only available through their methods. In

158 C H A P T E R 7 ■ M O R E A B S T R A C T I O N

Python, all attributes are publicly available, but programmers should still be careful about
accessing an object’s state directly, since they might unwittingly make the state inconsis-
tent in some way.

Inheritance. One class may be the subclass of one or more other classes. The subclass then
inherits all the methods of the superclasses. You can use more than one superclass, and
this feature can be used to compose orthogonal pieces of functionality. A common way of
implementing this is using a core superclass along with one or more mix-in superclasses.

Interfaces and introspection. In general, you don’t want to prod an object too deeply. You
rely on polymorphism, and call the methods you need. However, if you want to find out
what methods or attributes an object has, there are functions that will do the job for you.

Object-oriented design. There are many opinions about how (or whether!) to do object-
oriented design. No matter where you stand on the issue, it’s important to understand
your problem thoroughly, and to create a design that is easy to understand.

New Functions in This Chapter

What Now?
You’ve learned a lot about creating your own objects and how useful that can be. Before diving
headlong into the magic of Python’s special methods (Chapter 9), let’s take a breather with a
little chapter about exception handling.

Function Description

callable(object) Determines if the object is callable (such as a function
or a method)

getattr(object, name[, default]) Gets the value of an attribute, optionally providing
a default

hasattr(object, name) Determines if the object has the given attribute

isinstance(object, class) Determines if the object is an instance of the class

issubclass(A, B) Determines if A is a subclass of B

random.choice(sequence) Chooses a random element from a non-empty sequence

setattr(object, name, value) Sets the given attribute of the object to value

type(object) Returns the type of the object

159

■ ■ ■

C H A P T E R 8

Exceptions

When writing computer programs, it is usually possible to discern between a normal course
of events and something that’s exceptional (out of the ordinary). Such exceptional events might be
errors (such as trying to divide a number by zero), or simply something you might not expect
to happen very often. To handle such exceptional events, you might use conditionals every-
where the events might occur (for example, have your program check whether the denominator is
zero for every division). However, this would not only be inefficient and inflexible, but would
also make the programs illegible. You might be tempted to ignore these exceptions and just
hope they won’t occur, but Python offers a powerful alternative.

What Is an Exception?
To represent exceptional conditions, Python uses exception objects. If such an exception object
is not handled in any way, the program terminates with a so-called traceback (an error message):

>>> 1/0
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero

If such error messages were all you could use exceptions for, exceptions wouldn’t be very
interesting. The fact is, however, that each exception is an instance of some class (in this case
ZeroDivisionError), and these instances may be raised and caught in various ways, allowing
you to trap the error and do something about it instead of allowing the entire program to fail.

In the next section, you learn how to create and raise your own exceptions. In the following
sections, you learn about handling exceptions in various ways.

WARNINGS

Exceptions may be used to represent exceptional or illegal states in your program (such as trying to divide a
number by zero, or reading from a nonexistent file), and will, unless caught by you, terminate the program.
Warnings, on the other hand, are mild error messages; they notify you that something isn’t quite right, but your
program keeps running. For example, try to import the regex module:

Continued

160 C H A P T E R 8 ■ EX C EP T I O N S

>>> import regex
__main__:1: DeprecationWarning: the regex module is deprecated;
please use the re module
>>> regex
<module 'regex' (built-in)>

It’s obvious that the interpreter didn’t like this; the regex module is old, and you should use the re module
instead. (You learn more about the re module in Chapter 10.) However, because a lot of code already uses the
regex module, it would be unreasonable to demand that re be used; that would simply break all the older
code. So instead, a warning is issued.

If, for some reason, you are stuck with the regex module, you can happily ignore the warning (although
you probably should rewrite your code). You can even filter it out (with the function filterwarnings), so it
isn’t printed:

>>> from warnings import filterwarnings
>>> filterwarnings('ignore')
>>> import regex

If you want to learn more about warnings, you can check out the warnings module in the standard
library documentation at http://www.python.org/doc/lib.

Making Things Go Wrong . . . Your Way
As you’ve seen, exceptions are raised automatically when something is wrong. Before looking
at how to deal with those exceptions, let’s take a look at how you can raise exceptions yourself—
and even create your own kinds of exceptions.

The raise Statement
To raise an exception, you use the raise statement with an argument that is either a class or an
instance. When using a class, an instance is created automatically; you can optionally provide
a string argument after the class, separated by a comma. Here are some simple examples, using
the built-in exception class Exception:

>>> raise Exception
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
Exception
>>> raise Exception, 'hyperdrive overload'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
Exception: hyperdrive overload
>>> raise Exception('hyperdrive overload')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
Exception: hyperdrive overload

C H A P T E R 8 ■ E X C E P T I O N S 161

■Note There are actually two other ways to use raise. The argument may be a string, or you can call
raise without any arguments. Using a string argument is considered obsolete; calling raise without argu-
ments is covered in the section “Look, Ma, No Arguments!” later in this chapter.

The first example (raise Exception) raises a generic exception with no information of
what went wrong. In the last two examples, I added the error message hyperdrive overload. As
you can see, the two forms raise class, message and raise class(message) are equivalent; both
raise an exception with the given error message.

There are many built-in classes available. You can find a description of all of them in the
Python Library Reference, in the section “Built-in Exceptions.” You can also explore them
yourself with the interactive interpreter; they are all found in the module exceptions, for your
convenience (as well as in the built-in namespace). To list the contents of a module, you can
use the dir function, which is described in Chapter 10:

>>> import exceptions
>>> dir(exceptions)
['ArithmeticError', 'AssertionError', 'AttributeError', ...]

In your interpreter, this list will be quite a lot longer—I’ve deleted most of the names in the
interest of legibility. All of these exceptions can be used in your raise statements:

>>> raise ArithmeticError
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ArithmeticError

Table 8-1 describes some of the most important built-in exceptions.

Table 8-1. Some Built-in Exceptions

Class Name Description

Exception The root class for all exceptions

AttributeError Raised when attribute reference or assignment fails

IOError Raised when trying to open a nonexistent file (among other things)

IndexError Raised when using a nonexistent index on a sequence

KeyError Raised when using a nonexistent key on a mapping

NameError Raised when a name (variable) is not found

SyntaxError Raised when the code is ill-formed

TypeError Raised when a built-in operation or function is applied to an object of
the wrong type

ValueError Raised when a built-in operation or function is applied to an object
with correct type, but with an inappropriate value

ZeroDivisionError Raised when the second argument of a division or modulo operation
is zero

162 C H A P T E R 8 ■ EX C EP T I O N S

Custom Exception Classes
Although the built-in exceptions cover a lot of ground and are sufficient for many purposes,
there are times when you might want to create your own. For example, in the hyperdrive
overload example, wouldn’t it be more natural to have a specific HyperDriveError class repre-
senting error conditions in the hyperdrive? It might seem that the error message is sufficient,
but as you will see in the next section (“Catching Exceptions”), you can selectively handle
certain types of exceptions based on their class. Thus, if you want to handle hyperdrive errors
with special error-handling code, you would need a separate class for the exceptions.

So, how do you create exception classes? Just like any other class—but be sure to subclass
Exception (either directly or indirectly, which means that subclassing any other built-in exception
is okay). Thus, writing a custom exception basically amounts to something like this:

class SomeCustomException(Exception): pass

Really not much work, is it?

Catching Exceptions
As mentioned earlier, the interesting thing about exceptions is that you can handle them (often
called trapping or catching the exceptions). You do this with the try/except statement. Let’s
say you have created a program that lets the user enter two numbers and then divides one by
the other, like this:

x = input('Enter the first number: ')
y = input('Enter the second number: ')
print x/y

This would work nicely until the user enters zero as the second number:

Enter the first number: 10
Enter the second number: 0
Traceback (most recent call last):
 File "exceptions.py", line 3, in ?
 print x/y
ZeroDivisionError: integer division or modulo by zero

To catch the exception and perform some error handling (in this case simply printing a
more user-friendly error message), you could rewrite the program like this:

try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 print x/y
except ZeroDivisionError:
 print "The second number can't be zero!"

It might seem that a simple if statement checking the value of y would be easier to use,
and in this case it might indeed be a better solution. But if you added more divisions to your
program, you would need one if statement per division; by using try/except, you need only
one error handler.

C H A P T E R 8 ■ E X C E P T I O N S 163

Look, Ma, No Arguments!
If you have caught an exception but you want to raise it again (pass it on, so to speak), you can
call raise without any arguments. (You can also supply the exception explicitly if you catch it,
as explained in the section “Catching the Object,” later in this chapter.)

As an example of how this might be useful, consider a calculator class that has the capa-
bility to “muffle” ZeroDivisionErrors. If this behavior is turned on, the calculator prints out an
error message instead of letting the exception propagate. This is useful if the calculator is used
in an interactive session with a user, but if it is used internally in a program, raising an excep-
tion would be better. Therefore the muffling can be turned off. Here is the code for such a class:

class MuffledCalculator:
 muffled = 0
 def calc(self, expr):
 try:
 return eval(expr)
 except ZeroDivisionError:
 if self.muffled:
 print 'Division by zero is illegal'
 else:
 raise

■Note If division by zero occurs and muffling is turned on, the calc method will (implicitly) return None.
In other words, if you turn on muffling, you should not rely on the return value.

The following is an example of how this class may be used, both with and without muffling:

>>> calculator = MuffledCalculator()
>>> calculator.calc('10/2')
5
>>> calculator.calc('10/0') # No muffling
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "MuffledCalculator.py", line 6, in calc
 return eval(expr)
 File "<string>", line 0, in ?
ZeroDivisionError: integer division or modulo by zero
>>> calculator.muffled = 1
>>> calculator.calc('10/0')
Division by zero is illegal

As you can see, when the calculator is not muffled, the ZeroDivisionError is caught but
passed on.

164 C H A P T E R 8 ■ EX C EP T I O N S

More Than One except Clause
If you run the program from the previous section again and enter a nonnumeric value at the
prompt, another exception occurs:

Enter the first number: 10
Enter the second number: "Hello, world!"
Traceback (most recent call last):
 File "exceptions.py", line 4, in ?
 print x/y
TypeError: unsupported operand type(s) for /: 'int' and 'str'

Because the except clause only looked for ZeroDivisionError exceptions, this one slipped
through and halted the program. To catch this as well, you can simply add another except
clause to the same try/except statement:

try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 print x/y
except ZeroDivisionError:
 print "The second number can't be zero!"
except TypeError:
 print "That wasn't a number, was it?"

This time using an if statement would be more difficult. How do you check whether a
value can be used in division? There are a number of ways, but by far the best way is, in fact, to
simply divide the values to see if it works.

Also notice how the exception handling doesn’t clutter the original code; adding lots of
if statements to check for possible error conditions could easily have made the code quite
unreadable.

Catching Two Exceptions with One Block
If you want to catch more than one exception type with one block, you can specify them all in
a tuple, as follows:

try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 print x/y
except (ZeroDivisionError, TypeError):
 print 'Your numbers were bogus...'

In the preceding code, if the user either enters a string or something other than a number,
or if the second number is zero, the same error message is printed. Simply printing an error
message isn’t very helpful, of course. An alternative could be to keep asking for numbers until
the division works. I show you how to do that in the section “When All Is Well,” later in this chapter.

C H A P T E R 8 ■ E X C E P T I O N S 165

Note that the parentheses around the exceptions in the except clause are important; a
common error is to omit them, in which case you may end up with something other than what
you want. For an explanation, see the next section, “Catching the Object.”

Catching the Object
If you want access to the exception itself in an except clause, you can use two arguments instead
of one. (Note that even when you are catching multiple exceptions, you are only supplying
except with one argument—a tuple.) This can be useful (for example) if you want your program
to keep running, but you want to log the error somehow (perhaps just printing it out to the
user). The following is an example program that prints out the exception (if it occurs), but
keeps running:

try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 print x/y
except (ZeroDivisionError, TypeError), e:
 print e

The except clause in this little program again catches two types of exceptions, but because
you also explicitly catch the object itself, you can print it out so the user can see what happened.
(You see a more useful application of this later in this chapter, in the section “When All Is Well.”)

A Real Catchall
Even if the program handles several types of exceptions, some may still slip through. For
example, using the same division program, simply try to press Enter at the prompt, without
writing anything. You should get a stack trace somewhat like this:

Traceback (most recent call last):
 File 'exceptions.py', line 3, in ?
 x = input('Enter the first number: ')
 File '<string>', line 0

 ^
SyntaxError: unexpected EOF while parsing

This exception got through the try/except statement—and rightly so. You hadn’t foreseen
that this could happen, and weren’t prepared for it. In these cases it is better that the program
crash immediately (so you can see what’s wrong) than that it simply hide the exception with a
try/except statement that isn’t meant to catch it.

However, if you do want to catch all exceptions in a piece of code, you can simply omit the
exception class from the except clause:

166 C H A P T E R 8 ■ EX C EP T I O N S

try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 print x/y
except:
 print 'Something wrong happened...'

Now you can do practically whatever you want:

Enter the first number: "This" is *completely* illegal 123
Something wrong happened...

■Caution Catching all exceptions like this is risky business because it will hide errors you haven’t thought
of as well as those you’re prepared for. It will also trap attempts by the user to terminate execution by Ctrl-C,
attempts by functions you call to terminate by sys.exit, and so on. In most cases, it would be better to use
except Exception, e and perhaps do some checking on the exception object, e.

When All Is Well
In some cases, it can be useful to have a block of code that is executed unless something bad
happens; as with conditionals and loops, you can add an else clause:

try:
 print 'A simple task'
except:
 print 'What? Something went wrong?'
else:
 print 'Ah...It went as planned.'

If you run this, you get the following output:

A simple task
Ah...It went as planned.

With this else clause, you can implement the loop hinted at in the section “Catching Two
Exceptions with One Block,” earlier in this chapter:

while 1:
 try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 value = x/y
 print 'x/y is', value
 except:
 print 'Invalid input. Please try again.'
 else:
 break

C H A P T E R 8 ■ E X C E P T I O N S 167

Here the loop is only broken (by the break statement in the else clause) when no exception
is raised. In other words, as long as something wrong happens, the program keeps asking for
new input. The following is an example run:

Enter the first number: 1
Enter the second number: 0
Invalid input. Please try again.
Enter the first number: 'foo'
Enter the second number: 'bar'
Invalid input. Please try again.
Enter the first number: baz
Invalid input. Please try again.
Enter the first number: 10
Enter the second number: 2
x/y is 5

As mentioned previously, an alternative to using an empty except clause is to catch all
exceptions of the Exception class (which will catch all exceptions of any subclass as well). You
cannot be 100 percent certain that you’ll catch everything then, because the code in your
try/except statement may be naughty and use the old-fashioned string exceptions, or perhaps
create a custom exception that doesn’t subclass Exception. However, if you go with the except
Exception version, you can use the technique from the section “Catching the Object,” earlier in
this chapter, to print out a more instructive error message in your little division program:

while 1:
 try:
 x = input('Enter the first number: ')
 y = input('Enter the second number: ')
 value = x/y
 print 'x/y is', value
 except Exception, e:
 print 'Invalid input:', e
 print 'Please try again'
 else:
 break

The following is a sample run:

Enter the first number: 1
Enter the second number: 0
Invalid input: integer division or modulo by zero
Please try again
Enter the first number: 'x'
Enter the second number: 'y'
Invalid input: unsupported operand type(s) for /: 'str' and 'str'
Please try again
Enter the first number: foo

168 C H A P T E R 8 ■ EX C EP T I O N S

Invalid input: name 'foo' is not defined
Please try again
Enter the first number: 10
Enter the second number: 2
x/y is 5

And Finally . . .
Finally, there is the finally clause. You use it to do housekeeping after a possible exception. It
is combined with a try clause (but not an except clause):

x = None
try:
 x = 1/0
finally:
 print 'Cleaning up...'
 del x

In the preceding, you are guaranteed that the finally clause will get executed, no matter
what exceptions occur in the try clause. (The reason for initializing x before the try clause is
that otherwise it would never get assigned a value because of the ZeroDivisionError. This would
lead to an exception when using del on it within the finally clause, which you wouldn’t catch.)

If you run this, the cleanup comes before the program crashes and burns:

Cleaning up...
Traceback (most recent call last):
 File "C:\python\div.py", line 4, in ?
 x = 1/0
ZeroDivisionError: integer division or modulo by zero

Exceptions and Functions
Exceptions and functions work together quite naturally. If an exception is raised inside a function,
and isn’t handled there, it propagates (bubbles up) to the place where the function was called.
If it isn’t handled there either, it continues propagating until it reaches the main program (the
global scope), and if there is no exception handler there, the program halts with an error message
and some information about what went wrong (a stack trace). Let’s take a look at an example:

>>> def faulty():
... raise Exception('Something is wrong')
...
>>> def ignore_exception():
... faulty()
...

C H A P T E R 8 ■ E X C E P T I O N S 169

>>> def handle_exception():
... try:
... faulty()
... except:
... print 'Exception handled'
...
>>> ignore_exception()
Traceback (most recent call last):
 File '<stdin>', line 1, in ?
 File '<stdin>', line 2, in ignore_exception
 File '<stdin>', line 2, in faulty
Exception: Something is wrong
>>> handle_exception()
Exception handled

As you can see, the exception raised in faulty propagates through faulty and
ignore_exception, and finally causes a stack trace. Similarly, it propagates through to
handle_exception, but there it is handled with a try/except statement.

The Zen of Exceptions
Exception handling isn’t very complicated. If you know that some part of your code may cause
a certain kind of exception, and you don’t simply want your program to terminate with a stack
trace if and when that happens, then you add the necessary try/except or try/finally state-
ments to deal with it, as needed.

Sometimes, you can accomplish the same thing with conditional statements as you can
with exception handling, but the conditional statements will probably end up being less natural
and less readable. On the other hand, some things that might seem like natural applications of
if/else may in fact be implemented much better with try/except. Let’s take a look at a couple
of examples.

Let’s say you have a dictionary and you want to print the value stored under a specific
key—if it is there. If it isn’t there, you don’t want to do anything. The code might be something
like this:

def describePerson(person):
 print 'Description of', person['name']
 print 'Age:', person['age']
 if 'occupation' in person:
 print 'Occupation:', person['occupation']

If you supply this function with a dictionary containing the name Throatwobbler
Mangrove and the age 42 (but no occupation), you get the following output:

Description of Throatwobbler Mangrove
Age: 42

170 C H A P T E R 8 ■ EX C EP T I O N S

If you add the occupation “camper,” you get the following output:

Description of Throatwobbler Mangrove
Age: 42
Occupation: camper

The code is intuitive, but a bit inefficient (although the main concern here is really code
simplicity). It has to look up the key 'occupation' twice—once to see whether the key exists (in
the condition) and once to get the value (to print it out). An alternative definition is

def describePerson(person):
 print 'Description of', person['name']
 print 'Age:', person['age']
 try: print 'Occupation:', person['occupation']
 except KeyError: pass

Here the function simply assumes that the key 'occupation' is present. If you assume that it
normally is, this saves some effort: The value will be fetched and printed—no extra fetch to
check whether it is indeed there. If the key doesn’t exist, a KeyError exception is raised, which
is trapped by the except clause.

You may also find try/except useful when checking whether an object has a specific
attribute or not. Let’s say you want to check whether an object has a write attribute, for
example. Then you could use code like this:

try: obj.write
except AttributeError:
 print 'The object is not writeable'
else:
 print 'The object is writeable'

Here the try clause simply accesses the attribute without doing anything useful with it. If
an AttributeError is raised, the object doesn’t have the attribute; otherwise, it has the attribute.
This is a natural alternative to the getattr solution introduced in Chapter 7 (in the section
“Interfaces and Introspection”). Which one you prefer is largely a matter of taste. Indeed,
getattr is internally implemented in exactly this way: It tries to access the attribute and catches
the AttributeError that this attempt may raise.

Note that the gain in efficiency here isn’t great. (It’s more like really, really tiny.) In general
(unless your program is having performance problems), you shouldn’t worry about that sort of
optimization too much. The point is that using a try/except statement is in many cases much
more natural (more “Pythonic”) than if/else, and you should get into the habit of using it
where you can.

■Note The preference for try/except in Python is often explained through Grace Hopper's words of
wisdom, “It’s easier to ask forgiveness than permission.” This strategy of simply trying to do something and
dealing with any errors rather than doing a lot of checking up front is called the Leap Before You Look idiom.

C H A P T E R 8 ■ E X C E P T I O N S 171

A Quick Summary
The main topics covered in this chapter are as follows:

Exception objects. Exceptional situations (such as when an error has occurred) are repre-
sented by exception objects. These can be manipulated in several ways, but if ignored they
terminate your program.

Warnings. Warnings are similar to exceptions, but will (in general) just print out an
error message.

Raising exceptions. You can raise exceptions with the raise statement. It accepts either an
exception class or an exception instance as its argument. You can also supply two argu-
ments (an exception and an error message). If you call raise with no arguments in an
except clause, it “reraises” the exception caught by that clause.

Custom exception classes. You can create your own kinds of exceptions by subclassing
Exception.

Catching exceptions. You catch exceptions with the except clause of a try statement. If
you don’t specify a class in the except clause, all exceptions are caught. You can specify
more than one class by putting them in a tuple. If you give two arguments to except, the
second is bound to the exception object. You can have several except clauses in the same
try/except statement, to react differently to different exceptions.

else clauses. You can use an else clause in addition to except. The else clause is executed
if no exceptions are raised in the main try block.

finally. You can use try/finally if you need to make sure that some code (for example,
cleanup code) is executed regardless of whether an exception is raised or not. This code
is then put in the finally clause. Note that you cannot have both except clauses and a
finally clause in the same try statement—but you can put one inside the other.

Exceptions and functions. When you raise an exception inside a function, it propagates to
the place where the function was called. (The same goes for methods.)

New Functions in This Chapter

What Now?
While you might think that the material in this chapter was exceptional (pardon the pun), the
next chapter is truly magical. Well, almost magical.

Function Description

warnings.filterwarnings(action, ...) Used to filter out warnings

173

■ ■ ■

C H A P T E R 9

Magic Methods, Properties,
and Iterators

In Python, some names are spelled in a peculiar manner, with two leading and two trailing
underscores. You have already encountered some of these (such as __future__, for example).
This spelling signals that the name has a special significance—you should never invent such
names for your own programs. One set of such names that is very prominent in the language is
the set of magic (or special) method names. If one of your objects implements one of these
methods, that method will be called under specific circumstances (exactly which will depend
on the name) by Python. There is rarely any need to call these methods directly. This chapter
deals with a few important magic methods (most notably the __init__ method and some
methods dealing with item access, allowing you to create sequences or mappings of your own).
It also tackles two related topics: properties (previously dealt with through magic methods,
now handled by the property function), and iterators (which use the magic method __iter__
to enable them to be used in for loops). You’ll find a meaty example at the end of the chapter,
which uses some of the things you have learned so far to solve a fairly difficult problem.

Before We Begin . . .
In Python 2.2, the way Python objects work changed quite a bit. I mentioned this briefly in a
sidebar, “Types and Classes Then and Now,” in Chapter 7, and I discuss it again later in this
chapter (in the section “Subclassing list, dict, and str”). This change has several consequences,
most of which won’t be important to you as a beginning Python programmer.1 One thing is
worth noting, though: Even if you’re using a recent version of Python, some features (such as
properties and the super function) won’t work on “old-style” classes. To make your classes
“new-style,” you should (directly or indirectly) subclass the built-in class (or, actually, type)
object. Consider the following two classes:

1. For a thorough description of the differences between old-style and new-style classes, see Chapter 8 in
Alex Martelli’s Python in a Nutshell (O’Reilly & Associates, March 2003).

174 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

class NewStyle(object):
 more_code_here
class OldStyle:
 more_code_here

Of these two, NewStyle is a new-style class, while OldStyle is an old-style class.

■Note Rather than subclass a built-in type, you can make sure you’re using the same metaclass as they
do. Metaclasses are the classes of other classes (or types)—a rather advanced topic. However, you can use
the built-in metaclass called type to create new-style classes rather easily. Either you put the following
assignment in the top-level scope of your module (close to the top), or in the class-scope of your class:

__metaclass__ = type

Putting it at the beginning of a module makes it easy to make all your classes new-style. For more information
on metaclasses, you can take a look at the (somewhat technical) article called “Unifying types and classes in
Python 2.2” by Guido van Rossum (http://python.org/2.2/descrintro.html), or you can do a Web
search for the term “python metaclasses.”

In this book, I have taken the conservative approach of subclassing object only where it is
needed (because object did not exist before version 2.2), but if you do not specifically have to
make your programs compatible with old versions of Python, I would advise you to make all
your classes new-style, and consistently use features such as the super function (described in
the section “Using the super Function,” later in this chapter).

Constructors
The first magic method we’ll take a look at is the constructor. In case you have never heard the
word “constructor” before, it’s basically a fancy name for the kind of initializing method I have
already used in some of the examples, under the name init. What separates constructors from
ordinary methods, however, is that the constructors are called automatically right after an object
has been created. Thus, instead of doing what I’ve been doing up until now:

>>> f = FooBar()
>>> f.init()

constructors make it possible to simply do this:

>>> f = FooBar()

Creating constructors in Python is really easy; simply change the init method’s name
from the plain old init to the magic version, __init__:

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 175

class FooBar:
 def __init__(self):
 self.somevar = 42

>>> f = FooBar()
>>> f.somevar
42

Now, that’s pretty nice. But you may wonder what happens if you give the constructor
some parameters to work with. Consider the following:

class FooBar:
 def __init__(self, value=42):
 self.somevar = value

How do you think you could use this? Because the parameter is optional, you certainly
could go on like nothing had happened. But what if you wanted to use it (or you hadn’t made
it optional)? I’m sure you’ve guessed it, but let me show you anyway:

>>> f = FooBar('This is a constructor argument')
>>> f.somevar
'This is a constructor argument'

Of all the magic methods in Python, __init__ is quite certainly the one you’ll be using
the most.

■Note Python has a magic method called __del__, also known as the destructor. It is called just before
the object is destroyed (garbage collected), but because you cannot really know when (or if) this happens,
I would advise you to stay away from __del__ if at all possible.

Overriding the Constructor
In Chapter 7, you learned about inheritance. Each class may have one or more superclasses,
from which they inherit behavior. If a method is called (or an attribute is accessed) on an
instance of class B and it is not found, its superclass A would be searched. Consider the following
two classes:

class A:
 def hello(self):
 print "Hello, I'm A."

class B(A):
 pass

176 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

The class A defines a method called hello, which is inherited by B. Here is an example of
how these classes work:

>>> a = A()
>>> b = B()
>>> a.hello()
Hello, I'm A.
>>> b.hello()
Hello, I'm A.

Because B does not define a hello method of its own, the original message is printed when
b.hello is called. It is possible for B to override this method. Consider, for example, this modified
definition of B:

class B(A):
 def hello(self):
 print "Hello, I'm B."

Using this definition, b.hello() will give a different result:

>>> b = B()
>>> b.hello()
Hello, I'm B.

Overriding is an important aspect of the inheritance mechanism in general, but you will
most likely encounter one particular problem more often when dealing with constructors than
when overriding ordinary methods. If you override the constructor of a class, you need to call
the constructor of the superclass (the class you inherit from) or risk having an object that isn’t
properly initialized.

Consider the following class, Bird:

class Bird:
 def __init__(self):
 self.hungry = 1
 def eat(self):
 if self.hungry:
 print 'Aaaah...'
 self.hungry = 0
 else:
 print 'No, thanks!'

This class defines one of the most basic capabilities of all birds: eating. Here is an example
of how you might use it:

>>> b = Bird()
>>> b.eat()
Aaaah...
>>> b.eat()
No, thanks!

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 177

As you can see from this example, once the bird has eaten, it is no longer hungry. Now
consider the subclass SongBird, which adds singing to the repertoire of behaviors:

class SongBird(Bird):
 def __init__(self):
 self.sound = 'Squawk!'
 def sing(self):
 print self.sound

The SongBird class is just as easy to use as Bird:

>>> sb = SongBird()
>>> sb.sing()
Squawk!

Because SongBird is a subclass of Bird, it inherits the eat method, but if you try to call it,
you’ll discover a problem:

>>> sb.eat()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "birds.py", line 6, in eat
 if self.hungry:
AttributeError: SongBird instance has no attribute 'hungry'

The exception is quite clear about what’s wrong: the SongBird has no attribute called
'hungry'. Why should it? In SongBird the constructor is overridden, and the new constructor
doesn’t contain any initialization code dealing with the hungry attribute. To rectify the situation,
the SongBird constructor must call the constructor of its superclass, Bird, to make sure that the
basic initialization takes place. There are basically two ways of doing this: calling the unbound
version of the superclass’s constructor, and using the super function. In the next two sections
I explain both.

■Note Although this discussion centers around overriding constructors, the techniques apply to all methods.

Calling the Unbound Superclass Constructor
If you find the title of this section a bit intimidating, relax. Calling the constructor of a super-
class is, in fact, very easy (and useful). I’ll start by giving you the solution to the problem posed
at the end of the previous section:

class SongBird(Bird):
 def __init__(self):
 Bird.__init__(self)
 self.sound = 'Squawk!'
 def sing(self):
 print self.sound

178 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

Only one line has been added to the SongBird class, containing the code
Bird.__init__(self). Before I explain what this really means, let me just show you that this
really works:

>>> sb = SongBird()
>>> sb.sing()
Squawk!
>>> sb.eat()
Aaaah...
>>> sb.eat()
No, thanks!

But why does this work? When you retrieve a method from an instance, the self argument
of the method is automatically bound to the instance (a so-called bound method). You’ve seen
several examples of that. However, if you retrieve the method directly from the class (such as in
Bird.__init__), there is no instance to bind to. Therefore, you are free to supply any self you
want to. Such a method is called unbound, which explains the title of this section.

By supplying the current instance as the self argument to the unbound method, the song-
bird gets the full treatment from its superclass’s constructor (which means that it has its hungry
attribute set).

This technique works well in most situations, and knowing how to use unbound methods
like this is important. However, if you are using new-style classes, you should use the other
alternative: the super function.

Using the super Function
The super function only works in new-style classes. It is called with the current class and instance
as its arguments, and any method you call on the returned object will be fetched from the super-
class rather than the current class. So, instead of using Bird in the SongBird constructor, you
can use super(SongBird, self). Also, the __init__ method can be called in a normal (bound)
fashion.

The following is an updated version of the bird example. Note that Bird now subclasses
object to make the classes new-style:

class Bird(object):
 def __init__(self):
 self.hungry = 1
 def eat(self):
 if self.hungry:
 print 'Aaaah...'
 self.hungry = 0
 else:
 print 'No, thanks!'

class SongBird(Bird):
 def __init__(self):
 super(SongBird, self).__init__()
 self.sound = 'Squawk!'
 def sing(self):
 print self.sound

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 179

This new-style version works just like the old-style one:

>>> sb = SongBird()
>>> sb.sing()
Squawk!
>>> sb.eat()
Aaaah...
>>> sb.eat()
No, thanks!

WHAT’S SO SUPER ABOUT super?

In my opinion, the super function is more intuitive than calling unbound methods on the superclass directly,
but that is not its only strength. The super function is actually quite smart, so even if you have multiple super-
classes, you only need to use super once (provided that all the superclass constructors also use super). Also,
some obscure situations that are tricky when using old-style classes (for example, when two of your superclasses
share a superclass) are automatically dealt with by new-style classes and super. You don’t have to understand
exactly how it works internally, but you should be aware that, in most cases, it is clearly superior to calling the
unbound constructors (or other methods) of your superclasses.

So—what does super return, really? Normally, you don’t have to worry about it, and just pretend it returns
the superclass you need. What it actually does is return a super object, which will take care of method resolution for
you. When you access an attribute on it, it will look through all your superclasses (and supersuperclasses, and
so forth) until it finds the attribute (or raises an AttributeError).

Item Access
Although __init__ is by far the most important special method you’ll encounter, there are
many others that enable you to achieve quite a lot of cool things. One useful set of magic methods
described in this section enables you to create objects that behave like sequences or mappings.

The basic sequence and mapping protocol is pretty simple. However, to implement all the
functionality of sequences and mappings, there are many magic functions to implement. Luckily,
there are some shortcuts, but I’ll get to that.

■Note The word protocol is often used in Python to describe the rules governing some form of behavior.
This is somewhat similar to the notion of interfaces mentioned earlier. The protocol says something about
which methods you should implement and what those methods should do. Because polymorphism in Python
is only based on the object’s behavior (and not on its ancestry, for example, its class or superclass, and so
forth), this is an important concept: Where other languages might require an object to belong to a certain
class, or to implement a certain interface, Python often simply requires it to follow some given protocol. So,
to be a sequence, all you have to do is follow the sequence protocol.

180 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

The Basic Sequence and Mapping Protocol
Sequences and mappings are basically collections of items. To implement their basic behavior
(protocol), you need two magic methods if your objects are immutable, four if they are mutable:

__len__(self): This method should return the number of items contained in the collection.
For a sequence, this would simply be the number of elements; for a mapping, it would be
the number of key-value pairs. If __len__ returns zero (and you don’t implement __nonzero__,
which overrides this behavior), the object is treated as false in a Boolean context (as with
empty lists, tuples, strings, and dictionaries).

__getitem__(self, key): This should return the value corresponding to the given key. For
a sequence, the key should be an integer from zero to n–1 (or, it could be negative, as noted
later), where n is the length of the sequence; for a mapping, you could really have any kind
of keys.

__setitem__(self, key, value): This should store value in a manner associated with key,
so it can later be retrieved with __getitem__. Of course, you define this method only for
mutable objects.

__delitem__(self, key): This is called when someone uses the del statement on a part of
the object, and should delete the element associated with key. Again, only mutable objects
(and not all of them—only those for which you want to let items be removed) should define
this method.

Some extra requirements are imposed on these methods:

• For a sequence, if the key is a negative integer, it should be used to count from the end.
In other words, treat x[-n] the same as x[len(x)-n].

• If the key is of an inappropriate type (such as a string key used on a sequence) a TypeError
may be raised.

• If the index of a sequence is of the right type, but outside the allowed range, an IndexError
should be raised.

Let’s have a go at it—let’s see if we can create an infinite sequence:

def checkIndex(key):
 """
 Is the given key an acceptable index?

 To be acceptable, the key should be a non-negative integer. If it
 is not an integer, a TypeError is raised; if it is negative, an
 IndexError is raised (since the sequence is of infinite length).
 """
 if not isinstance(key, (int, long)): raise TypeError
 if key<0: raise IndexError

class ArithmeticSequence:
 def __init__(self, start=0, step=1):
 """

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 181

 Initialize the arithmetic sequence.

 start - the first value in the sequence
 step - the difference between two adjacent values
 changed - a dictionary of values that have been modified by
 the user
 """
 self.start = start # Store the start value
 self.step = step # Store the step value
 self.changed = {} # No items have been modified

 def __getitem__(self, key):
 """
 Get an item from the arithmetic sequence.
 """
 checkIndex(key)

 try: return self.changed[key] # Modified?
 except KeyError: # otherwise...
 return self.start + key*self.step # ...calculate the value

 def __setitem__(self, key, value):
 """
 Change an item in the arithmetic sequence.
 """
 checkIndex(key)

 self.changed[key] = value # Store the changed value

This implements an arithmetic sequence, a sequence of numbers in which each is greater
than the previous one by a constant amount. The first value is given by the constructor parameter
start (defaulting to zero), while the step between the values is given by step (defaulting to one).
You allow the user to change some of the elements by storing the exceptions to the general rule in
a dictionary called changed. If the element hasn’t been changed, it is calculated as start+key*step.

Here is an example of how you can use this class:

>>> s = ArithmeticSequence(1, 2)
>>> s[4]
9
>>> s[4] = 2
>>> s[4]
2
>>> s[5]
11

Note that it is illegal to delete items, which is why I haven’t implemented __del__:

182 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

>>> del s[4]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: ArithmeticSequence instance has no attribute '__delitem__'

Also, the class has no __len__ method because it is of infinite length.
If an illegal type of index is used, a TypeError is raised, and if the index is the correct type

but out of range (negative in the last of the following two examples), an IndexError is raised:

>>> s["four"]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "arithseq.py", line 31, in __getitem__
 checkIndex(key)
 File "arithseq.py", line 10, in checkIndex
 if not isinstance(key, int): raise TypeError
TypeError
>>> s[-42]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "arithseq.py", line 31, in __getitem__
 checkIndex(key)
 File "arithseq.py", line 11, in checkIndex
 if key<0: raise IndexError
IndexError

The index checking is taken care of by a utility function I’ve written for the purpose,
checkIndex.

BUT ISN’T THAT TYPE CHECKING?

One thing that might surprise you about the checkIndex function is the use of isinstance (which you
should rarely use because type or class checking goes against the grain of Python’s polymorphism). I’ve used
it because the language reference explicitly states that the index should be an integer (this includes long integers).
And complying with standards is one of the (very few) valid reasons for using type checking.

■Note You can simulate slicing, too, if you like. When slicing an instance that supports __getitem__,
a slice object is supplied as the key. (Slice objects are described in the Python Library Reference [http://
python.org/doc/lib] in Section 2.1, “Built-in Functions,” under the slice function.)

Subclassing list, dict, and str
While the four methods of the basic sequence/mapping protocol will get you far, the official
language reference also recommends that several other magic and ordinary methods be

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 183

implemented (see the section “Emulating Container Types” in the Python Reference Manual,
http://www.python.org/doc/ref/sequence-types.html), including the __iter__ method, which
I describe in the section “Iterators,” later in this chapter. Implementing all these methods (to
make your objects fully polymorphically equivalent to lists or dictionaries) is a lot of work and hard
to get right. If you want custom behavior in only one of the operations, it makes no sense that
you should have to reimplement all of the others. It’s just programmer laziness (also called
common sense).

So what should you do? The magic word is “inheritance.” Why reimplement all of these
things when you can inherit them? The standard library comes with three ready-to-use imple-
mentations of the sequence and mapping protocols (see the sidebar “UserList, UserString, and
UserDict”), and in newer versions of Python, you can subclass the built-in types themselves.
(Note that this is mainly useful if your class’s behavior is close to the default. If you have to reim-
plement most of the methods, it might be just as easy to write a new class.)

USERLIST, USERSTRING, AND USERDICT

The standard library contains three modules called UserList, UserString, and UserDict, each containing a
class with the same name as the module. These classes satisfy all the requirements of the sequence and
mapping protocols. UserList and UserString are custom sequences that behave just like ordinary lists and
strings, while UserDict is a custom mapping that behaves just like ordinary dictionaries. Until Python 2.2, these
were the best option as superclasses when creating your own mappings and sequences. In Python 2.2, the capa-
bility to subclass built-in types was added, making these less useful.

So, if you want to implement a sequence type that behaves similarly to the built-in lists, you
can simply subclass list.

■Note When you subclass a built-in type such as list, you are indirectly subclassing object. Therefore your
class is automatically new-style, which means that such features as the super function are available.

Let’s just do a quick example—a list with an access counter:

class CounterList(list):
 def __init__(self, *args):
 super(CounterList, self).__init__(*args)
 self.counter = 0
 def __getitem__(self, index):
 self.counter += 1
 return super(CounterList, self).__getitem__(index)

The CounterList class relies heavily on the behavior of its subclass (list). Any methods not
overridden by CounterList (such as append, extend, index, and so on) may be used directly. In the
two methods that are overridden, super is used to call the superclass version of the method, only

184 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

adding the necessary behavior of initializing the counter attribute (in __init__) and updating
the counter attribute (in __getitem__).

■Note Overriding __getitem__ is not a bullet-proof way of trapping user access because there are other
ways of accessing the list contents, such as through the pop method.

Here is an example of how CounterList may be used:

>>> cl = CounterList(range(10))
>>> cl
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> cl.reverse()
>>> cl
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> del cl[3:6]
>>> cl
[9, 8, 7, 3, 2, 1, 0]
>>> cl.counter
0
>>> cl[4] + cl[2]
9
>>> cl.counter
2

As you can see, CounterList works just like list in most respects. However, it has a counter
attribute (initially zero), which is incremented each time you access a list element. After performing
the addition cl[4] + cl[2], the counter has been incremented twice, to the value 2.

More Magic
There are special (magic) names for many purposes—what I’ve shown you so far is just a small
taste of what is possible. Most of the magic methods available are meant for fairly advanced
use, so I won’t go into detail here. However, if you are interested, it is possible to emulate numbers,
make objects that can be called as if they were functions, influence how objects are compared,
and much more. For more information on which magic methods are available, see the section
“Special Method Names” in the Python Reference Manual (http://www.python.org/doc/ref/
specialnames.html).

Properties
In Chapter 7, I mentioned accessor methods. Accessors are simply methods with names such
as getHeight and setHeight and are used to retrieve or rebind some attribute (which may be

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 185

private to the class—see the section “In Private” in Chapter 7). Encapsulating state variables
(attributes) like this can be important if certain actions must be taken when accessing the given
attribute. For example, consider the following Rectangle class:

class Rectangle:
 def __init__(self):
 self.width = 0
 self.height = 0
 def setSize(self, size):
 self.width, self.height = size
 def getSize(self):
 return self.width, self.height

Here is an example of how you can use the class:

>>> r = Rectangle()
>>> r.width = 10
>>> r.height = 5
>>> r.getSize()
(10, 5)
>>> r.setSize((150, 100))
>>> r.width
150

The getSize and setSize methods are accessors for a fictitious attribute called size—
which is simply the tuple consisting of width and height. This code isn’t directly wrong, but it
is flawed. The programmer using this class shouldn’t have to worry about how it is implemented
(encapsulation). If you some day wanted to change the implementation so that size was a real
attribute and width and height were calculated on the fly, you would have to wrap them in
accessors, and any programs using the class would also have to be rewritten. The client code
(the code using your code) should be able to treat all your attributes in the same manner.

So what is the solution? To wrap all your attributes in accessors? That is a possibility, of
course. However, it would be impractical (and kind of silly) if you had lots of simple attributes;
you would have to write many accessors that did nothing but retrieve or set these attributes,
with no useful action taken. This smells of copy-paste programming, or cookie-cutter code, which
is clearly a bad thing (although quite common for this specific problem in certain languages).
Luckily, Python can hide your accessors for you, making all of your attributes look alike. Those
attributes that are defined through their accessors are often called properties.

There are, in fact, two mechanisms for creating properties in Python. I’ll focus on the most
recent one, the property function, which only works on new-style classes. Then, I’ll give you a
short description of how to implement properties with magic methods.

The property Function
Using the property function is delightfully simple. If you have already written a class such as
Rectangle from the previous section, you only have to add a single line of code (in addition to
subclassing object):

186 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

class Rectangle(object):
 def __init__(self):
 self.width = 0
 self.height = 0
 def setSize(self, size):
 self.width, self.height = size
 def getSize(self):
 return self.width, self.height
 size = property(getSize, setSize)

In this new version of Rectangle, a property is created with the property function with the
accessor functions as arguments (the getter first, then the setter), and this property is stored
under the name size. After this, you no longer have to worry about how things are implemented,
but can treat width, height, and size the same way:

>>> r = Rectangle()
>>> r.width = 10
>>> r.height = 5
>>> r.size
(10, 5)
>>> r.size = 150, 100
>>> r.width
150

As you can see, the size attribute is still subject to the calculations in getSize and setSize,
but it looks just like a normal attribute.

■Tip If your properties are behaving oddly, make sure your class subclasses object (either directly or
indirectly—or by setting the metaclass directly). If it doesn’t, the getter part of the property will still work, but
the setter part won’t. This can be a bit confusing.

In fact, the property function may be called with zero, one, three, or four arguments as well.
If called with no arguments, the resulting property is neither readable nor writable. If called with
only one argument (a getter method), the property is readable only. The third (optional) argument
is a method used to delete the attribute (it takes no arguments). The fourth (optional) argument
is a documentation string. The parameters are called fget, fset, fdel, and doc—you can use them
as keyword arguments if you want a property that, say, is only writable and has a docstring.

Although this section has been short (a testament to the simplicity of the property func-
tion), it is very important. The moral is this: With new-style classes, you should use property
rather than accessors.

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 187

BUT HOW DOES IT WORK?

In case you’re curious about how property does its magic, I’ll give you an explanation here. If you don’t care,
just skip ahead.

The fact is that property isn’t really a function—it’s a class whose instances have some magic methods
that do all the work. The methods in question are __get__, __set__, and __delete__. Together, these
three define the so-called descriptor protocol. An object implementing any of these three methods is a descriptor.
The special thing about descriptors is how they are accessed. For example, when reading an attribute, if the
returned object implements __get__, this method will be called (and the resulting value returned) instead of
simply returning the object. This is, in fact, the mechanism underlying properties, bound methods, static and
class methods (see the following section for more information), and super. A brief description of the descriptor
protocol may be found in the Python language reference (http://python.org/doc/ref/
descriptors.html). A more thorough source of information is Raymond Hettinger’s How-To Guide for
Descriptors (http://users.rcn.com/python/download/Descriptor.htm).

Static Methods and Class Methods

Before discussing the old way of implementing properties, let’s take a slight detour, and take a
look at another couple of features that are implemented in a similar manner to the new-style
properties. Static methods and class methods are created by wrapping methods in objects of
the staticmethod and classmethod types, respectively. Static methods are defined without self
arguments, and can be called directly on the class itself. Class methods are defined with a
self-like parameter normally called cls. You can call class methods directly on the class object
too, but the cls parameter then automatically is bound to the class. Here is a simple example
(note the use of new-style classes, by setting __metaclass__):

__metaclass__ = type

class MyClass:

 def smeth():
 print 'This is a static method'
 smeth = staticmethod(smeth)

 def cmeth(cls):
 print 'This is a class method of', cls
 cmeth = classmethod(cmeth)

The technique of wrapping and replacing the methods manually like this is a bit tedious.
In Python 2.4, a new syntax was introduced for wrapping methods like this, called decorators.
(They actually work with any callable objects as wrappers, and can be used on both methods
and functions.) You specify one or more decorators (which are applied in reverse order) by
listing them above the method (or function), using the @ operator:

188 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

__metaclass__ = type

class MyClass:

 @staticmethod
 def smeth():
 print 'This is a static method'

 @classmethod
 def cmeth(cls):
 print 'This is a class method of', cls

Once you’ve defined these methods, they can be used like this (that is, without instantiating
the class):

>>> MyClass.smeth()
This is a static method
>>> MyClass.cmeth()
This is a class method of <class '__main__.MyClass'>

Static methods and class methods haven’t historically been important in Python, mainly
because you could always use functions or bound methods instead, in some way, but also because
the support hasn’t really been there in earlier versions. So even though you may not see them
used much in current code, they do have their uses (such as factory functions, if you’ve heard
of those), and you may well think of some new ones.

__getattr__, __setattr__, and Friends
It is possible to implement properties with old-style classes, too, but you have to use magic
methods rather than the property function. The following four methods provide all the function-
ality you need (in old-style classes, you only use the last three):

__getattribute__(self, name): Automatically called when the attribute name is accessed.
(Works correctly on new-style classes only.)

__getattr__(self, name): Automatically called when the attribute name is accessed and
the object has no such attribute.

__setattr__(self, name, value): Automatically called when an attempt is made to bind
the attribute name to value.

__delattr__(self, name): Automatically called when an attempt is made to delete the
attribute name.

Although a bit trickier (and less efficient) to use than property, these magic methods are
quite powerful because you can write code in one of these methods that deals with several
properties. (If you have a choice, though, stick with property.)

Here is the Rectangle example again, this time with magic methods:

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 189

class Rectangle:
 def __init__(self):
 self.width = 0
 self.height = 0
 def __setattr__(self, name, value):
 if name == 'size':
 self.width, self.height = value
 else:
 self.__dict__[name] = value
 def __getattr__(self, name):
 if name == 'size':
 return self.width, self.height
 else:
 raise AttributeError

As you can see, this version of the class needs to take care of additional administrative
details. When considering this code example, it’s important to note the following:

• The __setattr__ method is called even if the attribute in question is not size. Therefore,
the method must take both cases into consideration: If the attribute is size, the same
operation is performed as before; otherwise, the magic attribute __dict__ is used. It
contains a dictionary with all the instances attributes. It is used instead of ordinary attribute
assignment to avoid having __setattr__ called again (which would cause the program
to loop endlessly).

• The __getattr__ method is called only if a normal attribute is not found, which means
that if the given name is not size, the attribute does not exist, and the method raises an
AttributeError. This is important if you want the class to work correctly with built-in
functions such as hasattr and getattr. If the name is size, the expression found in the
previous implementation is used.

ANOTHER TRAP

Just as there is an “endless loop” trap associated with __setattr__, there is a trap associated with
__getattribute__ as well. Because it intercepts all attribute accesses (in new-style classes), it will intercept
accesses to __dict__ as well! The only safe way to access attributes on self inside __getattribute__
is to use the __getattribute__ method of the superclass (using super).

Iterators
In this section, I cover only one magic method, __iter__, which is the basis of the iterator
protocol.

190 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

The Iterator Protocol
To iterate means to repeat something several times—what you do with loops. Until now I have
only iterated over sequences and dictionaries in for loops, but the truth is that you can iterate
over other objects, too: objects that implement the __iter__ method.

The __iter__ method returns an iterator, which is any object with a method called next,
which is callable without any arguments. When you call the next method, the iterator should
return its “next value.” If the method is called, and the iterator has no more values to return, it
should raise a StopIteration exception.

What’s the point, you say? Why not just use a list? Because it may often be overkill. If you
have a function that can compute values one by one, you may need them only one by one—not
all at once, stored in a list. If the number of values is large, the list may take up too much memory.
But there are other reasons: using iterators is more general, simpler, and more elegant. Let’s
take a look at an example you couldn’t do with a list, simply because the list would have to be
of infinite length!

Our “list” is the sequence of Fibonacci numbers. An iterator for these could be the following:

class Fibs:
 def __init__(self):
 self.a = 0
 self.b = 1
 def next(self):
 self.a, self.b = self.b, self.a+self.b
 return self.a
 def __iter__(self):
 return self

Note that the iterator implements the __iter__ method, which will, in fact, return the iterator
itself. In many cases, you’d put the __iter__ method in another object, which you would use in
the for loop. That would then return your iterator. It is recommended that iterators implement
an __iter__ method of their own in addition (returning self, just as I did here), so they them-
selves can be used directly in for loops.

■Note In formal terms, an object that implements the __iter__ method is iterable, while the object
implementing next is the iterator.

First, make a Fibs object:

>>> fibs = Fibs()

You can then use it in a for loop—for example, to find the smallest Fibonacci number that
is greater than 1,000:

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 191

>>> for f in fibs:
 if f > 1000:
 print f
 break
...
1597

Here the loop stops because I issue a break inside it; if I didn’t, the for loop would never end.

■Tip The built-in function iter can be used to get an iterator from an iterable object.

Making Sequences from Iterators
In addition to iterating over the iterators (which is what you normally do), you can convert
them to sequences. In most contexts in which you can use a sequence (except in operations
such as indexing or slicing), you can use an iterator instead. One useful example of this is
explicitly converting an iterator to a list using the list constructor:

>>> class TestIterator:
 value = 0
 def next(self):
 self.value += 1
 if self.value > 10: raise StopIteration
 return self.value
 def __iter__(self):
 return self
...
>>> ti = TestIterator()
>>> list(ti)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Generators
Generators (also called “simple generators” for historical reasons) are relatively new to Python,
and are (along with iterators) perhaps one of the most powerful features to come along for
years. Generators are a kind of iterators that are defined with normal function syntax. Exactly
how they work is best shown through example. Let’s first have a look at how you make them
and use them, and then take a peek under the hood afterward.

Making a Generator
Making a generator is simple; it’s just like making a function. I’m sure you are starting to tire of
the good old Fibonacci sequence by now, so let me do something else. I’ll make a function that
flattens nested lists. The argument is a list that may look something like this:

nested = [[1, 2], [3, 4], [5]]

192 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

In other words, a list of lists. My function should then give me the numbers in order. Here’s
a solution:

def flatten(nested):
 for sublist in nested:
 for element in sublist:
 yield element

Most of this function is pretty simple. First it iterates over all the sublists of the supplied
nested list; then it iterates over the elements of each sublist in order. If the last line had been
print element, for example, the function would have been easy to understand, right?

So what’s new here is the yield statement. Any function that contains a yield statement is
called a generator. And it’s not just a matter of naming; it will behave quite differently from
ordinary functions. The difference is that instead of returning one value, as you do with return,
you can yield several values, one at a time. Each time a value is yielded (with yield), the function
freezes: That is, it stops its execution at exactly that point and waits to be reawakened. When it
is, it resumes its execution at the point where it stopped.

I can make use of all the values by iterating over the generator:

>>> nested = [[1, 2], [3, 4], [5]]
>>> for num in flatten(nested):
 print num
...
1
2
3
4
5

or

>>> list(flatten(nested))
[1, 2, 3, 4, 5]

A Recursive Generator
The generator I designed in the previous section could only deal with lists nested two levels
deep, and to do that it used two for loops. What if you have a set of lists nested arbitrarily deeply?
Perhaps you use them to represent some tree structure, for example. (You can also do that with
specific tree classes, but the strategy is the same.) You need a for loop for each level of nesting,
but because you don’t know how many levels there are, you have to change your solution to be
more flexible. It’s time to turn to the magic of recursion:

def flatten(nested):
 try:
 for sublist in nested:
 for element in flatten(sublist):
 yield element
 except TypeError:
 yield nested

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 193

When flatten is called, you have two possibilities (as is always the case when dealing with
recursion): the base case and the recursive case. In the base case, the function is told to flatten
a single element (for example, a number), in which case the for loop raises a TypeError (because
you’re trying to iterate over a number), and the generator simply yields the element.

If you are told to flatten a list (or any iterable), however, you have to do some work. You go
through all the sublists (some of which may not really be lists) and call flatten on them. Then
you yield all the elements of the flattened sublists by using another for loop. It may seem slightly
magical, but it works:

>>> list(flatten([[[1],2],3,4,[5,[6,7]],8]))
[1, 2, 3, 4, 5, 6, 7, 8]

Making It Safer

There is one problem with this, however. If nested is a string-like object (string, Unicode,
UserString, and so on), it is a sequence and will not raise TypeError, yet you do not want to
iterate over it.

■Note There are two main reasons why you shouldn’t iterate over string-like objects in the flatten function.
First, you want to treat string-like objects as atomic values, not as sequences that should be flattened. Second,
iterating over them would actually lead to infinite recursion because the first element of a string is another
string of length one, and the first element of that string is the string itself(!).

To deal with this, you must add a test at the beginning of the generator. Trying to concat-
enate the object with a string and seeing if a TypeError results is the simplest and fastest way to
check whether an object is string-like.2 Here is the generator with the added test:

def flatten(nested):
 try:
 # Don't iterate over string-like objects:
 try: nested + ''
 except TypeError: pass
 else: raise TypeError
 for sublist in nested:
 for element in flatten(sublist):
 yield element
 except TypeError:
 yield nested

As you can see, if the expression nested + '' raises a TypeError, it is ignored; however, if
the expression does not raise a TypeError, the else clause of the inner try statement raises a
TypeError of its own. This causes the string-like object to be yielded as is (in the outer except
clause). Got it?

2. Thanks to Alex Martelli for pointing out this idiom and the importance of using it here.

194 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

Here is an example to demonstrate that this version works with strings as well:

>>> list(flatten(['foo', ['bar', ['baz']]]))
['foo', 'bar', 'baz']

Note that there is no type checking going on here. I don’t test whether nested is a string
(which I could do by using isinstance), only whether it behaves like one (that is, it can be
concatenated with a string).

Generators in General
If you followed the examples so far, you know how to use generators, more or less. Let me just
give you a general description: A generator is a function that contains the keyword yield. When
it is called, the code in the function body is not executed. Instead, an iterator is returned. Each
time a value is requested, the code in the generator is executed until a yield or a return is
encountered. A yield means that a value should be yielded. A return means that the generator
should stop executing (without yielding anything more; return can only be called without
arguments when used inside a generator).

In other words, generators consist of two separate components: the generator-function
and the generator-iterator. The generator-function is what is defined by the def statement
containing a yield; the generator-iterator is what this function returns. In less precise terms,
these two entities are often treated as one, and collectively called a generator.

>>> def simple_generator():
 yield 1
...
>>> simple_generator
<function simple_generator at 153b44>
>>> simple_generator()
<generator object at 1510b0>

The iterator returned by the generator-function can be used just like any other iterator.

Avoiding Generators
If you have to use an older version of Python, generators aren’t available. What follows is a
simple recipe for simulating them with normal functions.

Starting with the code for the generator, begin by inserting the following line at the begin-
ning of the function body:

result = []

If the code already uses the name result, you should come up with another. (Using a more
descriptive name may be a good idea anyway.) Then, replace all lines of the form

yield some_expression

with

result.append(some_expression)

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 195

Finally, at the end of the function, add

return result

Although this may not work with all generators, it works with most. (For example, it fails
with infinite generators, which of course can’t stuff their values into a list.)

Here is the flatten generator rewritten as a plain function:

def flatten(nested):
 result = []
 try:
 # Don't iterate over string-like objects:
 try: nested + ''
 except TypeError: pass
 else: raise TypeError
 for sublist in nested:
 for element in flatten(sublist):
 result.append(element)
 except TypeError:
 result.append(nested)
 return result

The Eight Queens
Now that you’ve learned about all this magic, it’s time to put it to work. In this section, you see
how to use generators to solve a classic programming problem.

Generators are ideal for complex recursive algorithms that gradually build a result. Without
generators, these algorithms usually require you to pass a half-built solution around as an extra
parameter so that the recursive calls can build on it. With generators, all the recursive calls
have to do is yield their part. That is what I did with the preceding recursive version of flatten,
and you can use the exact same strategy to traverse graphs and tree structures.

GRAPHS AND TREES

If you have never heard of graphs and trees before, you ought to learn about them as soon as possible; they
are very important concepts in programming and computer science. To find out more, you should probably get
a book about computer science, discrete mathematics, data structures, or algorithms. For some concise definitions,
you can check out the following Web pages:

• http://mathworld.wolfram.com/Graph.html

• http://mathworld.wolfram.com/Tree.html

• http://www.nist.gov/dads/HTML/tree.html

• http://www.nist.gov/dads/HTML/graph.html

A quick Web search ought to turn up a lot of material.

196 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

Backtracking
In some applications, however, you don’t get the answer right away; you have to try several
alternatives. And not only do you have to try several alternatives on one level, but on every level
in your recursion. To draw a parallel from real life, imagine that you have an important meeting
to go to. You’re not sure where it is, but you have two doors in front of you, and the meeting
room has to be behind one of them. You choose the left, and step through. There you face
another two doors. You choose the left, but it turns out to be wrong. So you backtrack, and
choose the right door, which also turns out to be wrong (excuse the pun). So, you backtrack
again, to the point where you started, ready to try the right door there.

This strategy of backtracking is useful for solving problems that require you try every
combination until you find a solution. Such problems are solved like this:

Pseudocode
for each possibility at level 1:
 for each possibility at level 2:
 ...
 for each possibility at level n:
 is it viable?

To implement this directly with for loops, you have to know how many levels you’ll
encounter. If that is not possible, you use recursion.

The Problem
This is a much loved computer science puzzle: You have a chessboard, and eight queen pieces
to place on it. The only requirement is that none of the queens threatens any of the others; that
is, you must place them so that no two queens can capture each other. How do you do this?
Where should the queens be placed?

This is a typical backtracking problem: you try one position for the first queen (in the first
row), advance to the second, and so on. If you find that you are unable to place a queen, you
backtrack to the previous one and try another position. Finally, you either exhaust all possibilities,
or find a solution.

In the problem as stated, you are provided with information that there will be only eight
queens, but let’s assume that there can be any number of queens. (This is more similar to real-
world backtracking problems.) How do you solve that? If you want to try to solve it yourself, you
should stop reading now because I’m about to give you the solution.

■Note There are, in fact, much more efficient solutions available for this problem. If you want more details,
a Web search should turn up a wealth of information. A brief history of various solutions may be found at
http://www.cit.gu.edu.au/~sosic/nqueens.html.

State Representation
To represent a possible solution (or part of it), you can simply use a tuple (or a list, for that
matter). Each element of the tuple indicates the position (that is, column) of the queen of the

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 197

corresponding row. So if state[0] == 3, you know that the queen in row one is positioned in
column four (we are counting from zero, remember?). When working at one level of recursion
(one specific row), you know only what positions the queens above have, so you may have a
state tuple whose length is less than eight (or whatever the number of queens is).

■Note I could well have used a list instead of a tuple to represent the state. It’s mostly a matter of taste in
this case. In general, if the sequence is small and static, tuples are a good choice.

Finding Conflicts
Let’s start by doing some simple abstraction. To find a configuration in which there are no
conflicts (where no queen may capture another), you first have to define what a conflict is. And
why not define it as a function while you’re at it?

The conflict function is given the positions of the queens so far (in the form of a state tuple)
and determines if a position for the next queen generates any new conflicts:

def conflict(state, nextX):
 nextY = len(state)
 for i in range(nextY):
 if abs(state[i]-nextX) in (0, nextY-i):
 return True
 return False

The nextX parameter is the suggested horizontal position (x coordinate, or column) of the
next queen, and nextY is the vertical position (y coordinate, or row) of the next queen. This
function does a simple check for each of the previous queens. If the next queen has the same x
coordinate, or is on the same diagonal as (nextX, nextY), a conflict has occurred, and True is
returned. If no such conflicts arise, False is returned. The tricky part is the following expression:

abs(state[i]-nextX) in (0, nextY-i)

It is simply true if the horizontal distance between the next queen and the previous one under
consideration is either zero (same column) or equal to the vertical distance (on a diagonal)—and
false otherwise.

The Base Case
The Eight Queens problem can be a bit tricky to implement, but with generators it isn’t so bad.
If you aren’t used to recursion, I wouldn’t expect you to come up with this solution by yourself,
though. Note also that this solution isn’t particularly efficient, so with a very large number of
queens, it might be a bit slow.

Let’s begin with the base case: the last queen. What would you want her to do? Let’s say
you want to find all possible solutions; in that case you would expect her to produce (generate)
all the positions she could occupy (possibly none) given the positions of the others. You can
sketch this out directly:

198 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

def queens(num, state):
 if len(state) == num-1:
 for pos in range(num):
 if not conflict(state, pos):
 yield pos

In human-speak this means the following: If all but one queen have been placed, go through
all possible positions for the last one, and return the ones that don’t give rise to any conflicts.
The num parameter is the number of queens in total, and the state parameter is the tuple of
positions for the previous queens. For example, let’s say you have four queens, and that the
first three have been given the positions 1, 3, and 0, respectively, as shown in Figure 9-1. (Pay
no attention to the white queen at this point.)

Figure 9-1. Placing four queens on a 4×4 board

As you can see in the figure, each queen gets a (horizontal) row, and their positions are
numbered across the top (beginning with zero, as is normal in Python):

>>> list(queens(4, (1,3,0)))
[2]

It works like a charm. Using list simply forces the generator to yield all of its values. In this
case, only one position qualifies. The white queen has been put in this position in Figure 9-1.
(Note that color has no special significance and is not part of the program.)

The Recursive Case
Now, let’s turn to the recursive part of the solution. When you have your base case covered, the
recursive case may correctly assume (by induction) that all results from lower levels (the queens
with higher numbers) are correct. So what you have to do is add an else clause to the if state-
ment in the previous implementation of the queens function.

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 199

What results do you expect from the recursive call? You want the positions of all the lower
queens, right? Let’s say they are returned as a tuple. In that case you probably have to change
your base case to return a tuple as well (of length one)—but I get to that later.

So, you’re supplied with one tuple of positions from “above,” and for each legal position of
the current queen, you are supplied with a tuple of positions from “below.” All you have to do
to keep things flowing is to yield the result from below with your own position added to the front:

 ...
 else:
 for pos in range(num):
 if not conflict(state, pos):
 for result in queens(num, state + (pos,)):
 yield (pos,) + result

The for pos and if not conflict parts of this are identical to what you had before so you
can rewrite this a bit to simplify the code. Let’s add some default arguments as well:

def queens(num=8, state=()):
 for pos in range(num):
 if not conflict(state, pos):
 if len(state) == num-1:
 yield (pos,)
 else:
 for result in queens(num, state + (pos,)):
 yield (pos,) + result

If you find the code hard to understand, you might find it helpful to formulate what it does
in your own words. (And, you do remember that the comma in (pos,) is necessary to make it a
tuple, and not simply a parenthesized value?)

The queens generator gives you all the solutions (that is, all the legal ways of placing
the queens):

>>> list(queens(3))
[]
>>> list(queens(4))
[(1, 3, 0, 2), (2, 0, 3, 1)]
>>> for solution in queens(8):
... print solution
...
(0, 4, 7, 5, 2, 6, 1, 3)
(0, 5, 7, 2, 6, 3, 1, 4)
...
(7, 2, 0, 5, 1, 4, 6, 3)
(7, 3, 0, 2, 5, 1, 6, 4)
>>>

If you run queens with eight queens, you see a lot of solutions flashing by. Let’s find out
how many:

200 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

>>> len(list(queens(8)))
92

Wrapping It Up
Before leaving the queens, let’s make the output a bit more understandable. Clear output is
always a good thing because it makes it easier to spot bugs, among other things.

def prettyprint(solution):
 def line(pos, length=len(solution)):
 return '. ' * (pos) + 'X ' + '. ' * (length-pos-1)
 for pos in solution:
 print line(pos)

Note that I’ve made a little helper function inside prettyprint. I put it there because I assumed
I wouldn’t need it anywhere outside. In the following, I print out a random solution to satisfy
myself that it is correct:

>>> import random
>>> prettyprint(random.choice(list(queens(8))))
. X . .
. X
. X .
X
. . . X
. X
. . . . X . . .
. . X

This “drawing” corresponds to the diagram in Figure 9-2. Fun to play with Python, isn’t it?

Figure 9-2. One of many possible solutions to the Eight Queens problem

C H A P T E R 9 ■ M A G I C M E T H O D S , P R O P E R T I E S , A N D I T E R A T O R S 201

A Quick Summary
A lot of magic here. Let’s take stock:

New-style classes. The way classes work in Python is changing. In Python 2.2, new-style
classes were introduced, and they provide several new features (for example, they work
with super and property, while old-style classes do not). To create a new-style class you
must subclass object, either directly or indirectly, or set the __metaclass__ property.

Magic methods. Several special methods (with names beginning and ending with double
underscores) exist in Python. These methods differ quite a bit in function, but most of them
are called automatically by Python under certain circumstances. (For example, __init__
is called after object creation.)

Constructors. These are common to many object-oriented languages, and you’ll probably
implement one for almost every class you write. Constructors are named __init__ and are
automatically called right after an object is created.

Overriding. A class can override methods (or any other attributes) defined in its superclasses
simply by implementing the methods. If the new method needs to call the overridden
version, it can either call the unbound version from the superclass directly (old-style
classes) or use the super function (new-style classes).

Sequences and mappings. Creating a sequence or mapping of your own requires imple-
menting all the methods of the sequence and mapping protocols, including such magic
methods as __getitem__ and __setitem__. By subclassing list (or User List) and dict
(or UserDict) you can save a lot of work.

Iterators. An iterator is simply an object that has a next method. Iterators can be used to
iterate over a set of values. When there are no more values, the next method should raise
a StopIteration exception. Iterable objects have an __iter__ method, which returns an
iterator, and can be used in for loops, just like sequences. Often, an iterator is also iterable,
that is, it has an __iter__ method returning the iterator itself.

Generators. A generator function (or method) is a function (or method) that contains the
keyword yield. When called, the generator function returns a generator, which is a special
type of iterator.

Eight Queens. The Eight Queens problem is well known in computer science and lends itself
easily to implementation with generators. The goal is to position eight queens on a chess
board so that none of the queens is in a position from which she can attack any of the others.

202 C H A P T E R 9 ■ M A G I C M E T H O D S , P R O PE R T I E S , A N D I T E R A T O R S

New Functions in This Chapter

Note that iter and super may be called with other parameters than those described here.
For more information, see the standard Python documentation (http://python.org/doc).

What Now?
Now you know most of the Python language. So why are there still so many chapters left, you
ask? Oh, there is still a lot to learn, much of it about how Python can connect to the external
world in various ways. And then you have the projects . . . So we’re not done yet. Not by far.

Function Description

iter(obj) Extracts an iterator from an iterable object.

property(fget, fset, fdel, doc) Returns a property. All arguments are optional.

super(class, obj) Returns a bound instance of class’s superclass.

203

■ ■ ■

C H A P T E R 1 0

Batteries Included

You now know most of the basic Python language. While the core language is powerful in
itself, Python gives you more tools to play with. A standard installation includes a set of modules
called the standard library. You have already seen some of them (math and cmath, containing
mathematical functions for real and complex numbers, for example), but there are many more.
This chapter shows you a bit about how modules work, and how to explore them and learn
what they have to offer. Then the chapter offers an overview of the standard library focusing on
a few selected useful modules.

Modules
You already know about making your own programs (or scripts) and executing them. You have
also seen how you can fetch functions into your programs from external modules using import:

>>> import math
>>> math.sin(0)
0.0

Let’s take a look at how you can write your own modules.

Modules Are Programs
Any Python program can be imported as a module. Let’s say you have written the program in
Listing 10-1 and stored it in a file called hello.py (the name is important).

Listing 10-1. A Simple Module

hello.py
print "Hello, world!"

Where you save it is also important; in the next section you learn more about that, but for
now let’s say you save it in the directory C:\python (Windows) or ~/python (UNIX). Then you
can tell your interpreter where to look for the module by executing the following (using the
Windows directory):

>>> import sys
>>> sys.path.append('c:/python')

204 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

■Note In the path of the preceding directory I used forward slashes, while on Windows, backslashes
are the norm. Both are legal, but because backslashes are used to write certain special characters (such
as newlines), the forward slashes are safer. If you use backslashes, you can use either a raw string
(r'c:\python') or escape the backslash ('c:\\python').

What I did here was simply to tell the interpreter that it should look for modules in the
directory c:\python in addition to the places it would normally look. After having done this,
your can import your module (which is stored in the file c:\python\hello.py, remember?):

>>> import hello
Hello, world!

■Note When you import a module, you may notice that a new file appears—in this case c:\python\
hello.pyc. The file with the .pyc extension is a processed (“compiled”) Python file that has been translated
to a format that Python can handle more efficiently. If you import the same module later, Python will import
the .pyc file rather than the .py file, unless the .py file has changed; in that case, a new .pyc file is gener-
ated. Deleting the .pyc file does no harm (as long as there is an equivalent .py file available)—a new one is
created when needed.

As you can see, the code in the module is executed when you import it. However, if you try
to import it again, nothing happens:

>>> import hello
>>>

Why doesn’t it work this time? Because modules aren’t really meant to do things (such as
printing text) when they’re imported. They are mostly meant to define things, such as variables,
functions, classes, and so on. And because you only need to define things once, importing a
module several times has the same effect as importing it once.

WHY ONLY ONCE?

The import-only-once behavior is a substantial optimization in most cases, and it can be very important in one
special case: if two modules import each other.

In many cases, you may write two modules that need to access functions and classes from each other to
function properly. For example, you may have created two modules—clientdb and billing—containing
code for a client database and a billing system, respectively. Your client database may contain calls to your
billing system (for example, automatically sending a bill to a client every month), while the billing system probably
needs to access functionality from your client database to do the billing correctly.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 205

If each module could be imported several times, you would end up with a problem here. The module
clientdb would import billing, which again imports clientdb, which . . . you get the picture. You get an
endless loop of imports (endless recursion, remember?). However, because nothing happens the second time
you import the module, the loop is broken.

If you insist on reloading your module, you can use the built-in function reload. It takes a single argu-
ment (the module you want to reload) and returns the reloaded module. This may be useful if you have made
changes to your module and want those changes reflected in your program while it is running. To reload the
simple hello module (containing only a print statement), you would use the following:

>>> hello = reload(hello)
Hello, world!

Here I assume that hello has already been imported (once). By assigning the result of reload to hello,
I have replaced the previous version with the reloaded one. As you can see from the printed greeting, I am
really importing the module here.

Note that if you’ve created an object using a given module and you then reload that module, your object
will not be re-created. If you want your object to be based on the reloaded module, you will have to create it anew.

Modules Are Used to Define Things
So modules are executed the first time they are imported into your program. That seems sort of
useful—but not very. What makes them worthwhile is that they (just like classes) keep their
scope around afterward. That means that any class or function you define, and any variable
you assign a value to, become attributes of the module. This may seem complicated, but in
practice it is very simple. Let’s say you have written a module like the one in Listing 10-2 and
stored it in a file called hello2.py. Also assume that you’ve put it in a place where the Python
interpreter can find it, either using the sys.path trick from the previous section, or the more
conventional methods from the section “Making Your Modules Available,” which follows.

Listing 10-2. A Simple Module Containing a Function

hello2.py
def hello():
 print "Hello, world!"

You can then import it like this:

>>> import hello2

The module is then executed, which means that the function hello is defined in the scope
of the module, which means that you can access the function like this:

>>> hello2.hello()
Hello, world!

Any name defined in the global scope of the module will be available in the same manner.

206 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

WHY BOTHER?

Why would you want to do this, you may wonder. Why not just define everything in your main program? The
primary reason is code reuse. If you put your code in a module, you can use it in more than one of your programs,
which means that if you write a good client database and put it in a module called clientdb, you can use it
both when billing, when sending out spam (though I hope you won’t), and in any program that needs access
to your client data. If you hadn’t put this in a separate module, you would have to rewrite the code in each one
of these programs. So, remember: To make your code reusable, make it modular! (And, yes, this is definitely
related to abstraction.)

if __name__ == '__main__'

Modules are used to define things such as functions and classes, but every once in a while
(quite often, actually), it is useful to add some test code to a module that checks whether things
work as they should. For example, if you wanted to make sure that the hello function worked,
you might rewrite the module hello2 into a new one, hello3, defined in Listing 10-3.

Listing 10-3. A Simple Module with Some Problematic Test Code

hello3.py
def hello():
 print "Hello, world!"

A test:
hello()

This seems reasonable—if you run this as a normal program, you will see that it works.
However, if you import it as a module, to use the hello function in another program, the test
code is executed, as in the first hello module in this chapter:

>>> import hello3
Hello, world!
>>> hello3.hello()
Hello, world!

This is not what you want. The key to avoiding it is “telling” the module whether it’s being
run as a program on its own, or being imported into another program. To do that, you need the
variable __name__:

>>> __name__
'__main__'
>>> hello3.__name__
'hello3'

As you can see, in the “main program” (including the interactive prompt of the interpreter),
the variable __name__ has the value '__main__', while in an imported module, it is set to the
name of that module. Therefore, you can make your module’s test code more well behaved by
putting in an if statement, as shown in Listing 10-4.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 207

Listing 10-4. A Module with Conditional Test Code

hello4.py

def hello():
 print "Hello, world!"

def test():
 hello()

if __name__ == '__main__': test()

If you run this as a program, the hello function is executed, whereas if you import it, it
behaves like a normal module:

>>> import hello4
>>> hello4.hello()
Hello, world!

As you can see, I’ve wrapped up the test code in a function called test. I could have put the
code directly into the if statement; however, by putting it in a separate test function, you can
test the module even if you have imported it into another program:

>>> hello4.test()
Hello, world!

■Note If you write more thorough test code, it might be a good idea to put it in a separate program. See
Chapter 16 for more on writing tests.

Making Your Modules Available
In the previous examples, I have altered sys.path, which contains a list of directories (as strings)
in which the interpreter should look for modules. However, you don’t want to do this in general.
The ideal case would be for sys.path to contain the right directory (the one containing your
module) to begin with. There are two ways of doing this:

Solution 1: Putting Your Module in the Right Place

Putting your module in the right place (or, rather a right place, because there may be several
possibilities) is quite easy. It’s just a matter of finding out where the Python interpreter looks
for modules and then putting your file there.

■Note If the Python interpreter on the machine you’re working on has been installed by an administrator
and you do not have administrator permissions, you may not be able to save your module in any of the directories
used by Python. You will then have to skip ahead to solution number 2.

208 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

As you may remember, the list of directories (the so-called search path) can be found in
the path variable in the sys module:

>>> import sys, pprint
>>> pprint.pprint(sys.path)
['C:\\Python24\\Lib\\idlelib',
 'C:\\WINDOWS\\system32\\python24.zip',
 'C:\\Python24',
 'C:\\Python24\\DLLs',
 'C:\\Python24\\lib',
 'C:\\Python24\\lib\\plat-win',
 'C:\\Python24\\lib\\lib-tk',
 'C:\\Python24\\lib\\site-packages']

■Tip If you have a data structure that is too big to fit on one line, you can use the pprint function from the
pprint module instead of the normal print statement. pprint is a pretty-printing function, which makes
a more intelligent printout.

This is a relatively standard path for a Python 2.4 installation on Windows. You may not get
the exact same result. The point is that each of these strings provides a place to put modules if
you want your interpreter to find them. Even though all these will work, the site-packages
directory is the best choice because it’s meant for this sort of thing. Look through your sys.path
and find your site-packages directory, and save the module from Listing 10-4 in it, but give it
another name, such as another_hello.py. Then try the following:

>>> import another_hello
>>> another_hello.hello()
Hello, world!

As long as your module is located in a place like site-packages, all your programs will be
able to import it.

Solution 2: Telling the Interpreter Where to Look

Solution 1 might not be the right for you for a number of reasons:

• You don’t want to clutter the Python interpreter’s directories with your own modules.

• You don’t have permission to save files in the Python interpreter’s directories.

• You would like to keep your modules somewhere else.

The bottom line is that if you place your modules somewhere else, you have to tell the
interpreter where to look. As you saw earlier, one way of doing this is to edit sys.path, but that
is not a common way to do it. The standard method is to include your module directory (or
directories) in the environment variable PYTHONPATH.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 209

ENVIRONMENT VARIABLES

Environment variables are not part of the Python interpreter—they’re part of your operating system. Basically,
they are like Python variables, but they are set outside the Python interpreter. To find out how to set them you
should consult your system documentation, but here are a few pointers:

In UNIX, you will probably set environment variables in some shell file that is executed every time you log
in. If you use a shell such as bash, the file is .bashrc, found in your home directory. Add the following to that
file to add the directory ~/python to your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:~/python

Note that multiple directories are separated by colons. Other shells may have a different syntax for this
so you should consult the relevant documentation.

In Windows, you may be able to edit environment variables from your Control Panel (in reasonably
advanced versions of Windows, such as Windows XP, 2000, and NT; on older versions such as Windows 98,
this does not work, and you would have to edit your autoexec.bat file instead, as covered in the next para-
graph). From the Start menu, select Start ➤ Settings ➤ Control Panel. In the Control Panel, double-click the
System icon. In the dialog box that opens, select the Advanced tab and click the Environment Variables button. That
brings up another dialog box with two tables: one with your user variables and one with system variables. You
are interested in the user variables. If you see PYTHONPATH there already, select it and click Edit, and edit it.
Otherwise, click New and use PYTHONPATH as the name; enter your directory as the value. Note that multiple
directories are separated by semicolons.

If the previous tactic doesn’t work, you can edit the file autoexec.bat, which you can find (assuming
that you have a relatively standard setup) in the top directory of the C drive. Open the file in Notepad (or the
IDLE text editor, for that matter) and add a line setting the PYTHONPATH. If you want to add the directory
C:\python you type the following:

set PYTHONPATH=%PYTHONPATH%;C:\python

For information on setting up Python in Mac OS, see the MacPython pages at http://cwi.nl/~jack/
macpython.

Depending on which operating system you are using, the contents of PYTHONPATH varies
(see the sidebar “Environment Variables”), but basically it’s just like sys.path—a list of directories.

■Tip You don’t have to change the sys.path by using PYTHONPATH. Path configuration files provide a
useful shortcut to make Python do it for you. A path configuration file is a file with the file name extension
.pth that contains directories that should be added to sys.path; empty lines and lines beginning with # are
ignored. Files beginning with import are executed.

For a path configuration file to be executed, it must be placed in a directory where it can be found. For
Windows, use the directory named by sys.prefix (probably something like C:\Python22), and in UNIX,
use the site-packages directory. (For more information, look up the site module in the Python Library
Reference. This module is automatically imported during initialization of the Python interpreter.)

210 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Naming Your Module

As you may have noticed, the file that contains the code of a module must be given the same
name as the module—with an additional .py file name extension. In Windows, you can use the
file name extension .pyw instead. You learn more about what that file name extension means
in Chapter 12.

Packages
To structure your modules, you can group them into packages. A package is basically just another
type of module. The interesting thing about them is that they can contain other modules. While
a module is stored in a file (with the file name extension .py), a package is a directory. To make
Python treat it as a package, it must contain a file (module) named __init__.py. The contents
of this file will be the contents of the package, if you import it as if it were a plain module. For
example, if you have a package named constants, and the file constants/__init__.py contains
the statement PI = 3.14, you would be able to do the following:

import constants
print constants.PI

To put modules inside a package, simply put the module files inside the package directory.
For example, if you wanted a package called drawing, which contained one module called

shapes and one called colors, you would need the files and directories (UNIX pathnames)
shown in Table 10-1.

In Table 10-1, it is assumed that you have placed the directory ~/python in your PYTHONPATH. In
Windows, simply replace ~/python with c:\python and reverse the direction of the slashes (to
backslashes).

With this setup, the following statements are all legal:

import drawing # (1) Imports the drawing package
import drawing.colors # (2) Imports the colors module
from drawing import shapes # (3) Imports the shapes module

Table 10-1. A Simple Package Layout

File/Directory Description

~/python/ Directory in PYTHONPATH

~/python/drawing/ Package directory (drawing package)

~/python/drawing/__init__.py Package code (“drawing module”)

~/python/drawing/colors.py colors module

~/python/drawing/shapes.py shapes module

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 211

After the first statement (1), the contents of the __init__ module in drawing would be
available; the drawing and colors modules, however, would not be. After the second statement
(2), the colors module would be available, but only under its full name, drawing.colors. After
the third statement (3), the shapes module would be available, under its short name (that is,
simply shapes). Note that these statements are just examples. There is no need, for example, to
import the package itself before importing one of its modules as I have done here. The second
statement could very well be executed on its own, as could the third. You may nest packages
inside each other.

Exploring Modules
Before I tackle some of the standard library modules, I’ll show you how to explore modules on
your own. This is a valuable skill because you will encounter lots of useful modules in your
career as a Python programmer, and I couldn’t possibly cover all of them here. The current
standard library is large enough to warrant books all by itself (and such books have been
written)—and it’s growing. New modules are added with each release, and often some of the
modules undergo slight changes and improvements. Also, you will most certainly find several
useful modules on the Web, and being able to grok them quickly and easily will make your
programming much more enjoyable.1

What’s in a Module?
The most direct way of probing a module is to investigate it in the Python interpreter. The first
thing you need to do is to import it, of course. Let’s say you’ve heard rumors about a standard
module called copy:

>>> import copy

No exceptions are raised—so it exists. But what does it do? And what does it contain?

Using dir

To find out what a module contains, you can use the dir function, which lists all the attributes
of an object (and therefore all functions, classes, variables, and so on of a module). If you try to
print out dir(copy), you get a long list of names. (Go ahead, try it.) Several of these names begin
with an underscore—a hint (by convention) that they aren’t meant to be used outside the module.
So let’s filter them out with a little list comprehension (check the section on list comprehension
in Chapter 5 if you don’t remember how this works):

>>> [name for name in dir(copy) if name[0] != '_']
['Error', 'PyStringMap', 'copy', 'deepcopy', 'error']

The list comprehension is the list consisting of all the names from dir(copy) that don’t
have an underscore as their first letter. This list is much less confusing than the full listing.

1. The term “grok” is hackerspeak, meaning “to understand fully,” taken from Robert A. Heinlein’s novel
Stranger in a Strange Land (Ace Books, reissue 1995).

212 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

■Tip If you like tab completion, you might want to check out the modules readline and rlcompleter in
the library reference. They can be useful when exploring modules as discussed in this section.

The __all__ Variable

What I did with the little list comprehension in the previous section was to make a guess about
what I was supposed to see in the copy module. However, you can get the correct answer directly
from the module itself. In the full dir(copy) list, you may have noticed the name __all__. This
is a variable containing a list similar to the one I created with list comprehension—except that
this list has been set in the module itself. Let’s see what it contains:

>>> copy.__all__
['Error', 'error', 'copy', 'deepcopy']

My guess wasn’t so bad after all. I got only one extra name (PyStringMap) that wasn’t
intended for my use. But where did this __all__ list come from, and why is it really there? The
first question is easy to answer. It was set in the copy module, like this (copied directly from
copy.py):

__all__ = ["Error", "error", "copy", "deepcopy"]

So why is it there? It defines the public interface of the module. More specifically, it tells the
interpreter what it means to import all the names from this module. So if you use

from copy import *

you get only the four functions listed in the __all__ variable. To import PyStringMap, for example,
you would have to be explicit, either importing copy and using copy.PyStringMap, or using

from copy import PyStringMap

Setting __all__ like this is actually a useful technique when writing modules too. Because
you may have lots of variables, functions, and classes in your module that other programs
might not need or want, it is only polite to filter them out. If you don’t set __all__, the names
exported in a starred import defaults to all global names in the module that don’t begin with an
underscore.

Getting Help with help
Until now, you’ve been using your ingenuity and knowledge of various Python functions and
special attributes to explore the copy module. The interactive interpreter is a very powerful tool
for this sort of exploration because your mastery of the language is the only limit to how deeply
you can probe a module. However, there is one standard function that gives you all the infor-
mation you would normally need. That function is called help; let’s try it on the copy function:

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 213

>>> help(copy.copy)
Help on function copy in module copy:

copy(x)
 Shallow copy operation on arbitrary Python objects.

 See the module's __doc__ string for more info.

>>>

This is interesting: it tells you that copy takes a single argument x, and that it is a “shallow
copy operation.” But it also mentions the module’s __doc__ string. What’s that? You may
remember that I mentioned docstrings in Chapter 6. A docstring is simply a string you write at
the beginning of a function to document it. That string is then stored in the function attribute
__doc__. As you may understand from the preceding help text, modules may also have docstrings
(they are written at the beginning of the module), as may classes (they are written at the beginning
of the class).

Actually, the preceding help text was extracted from the copy function’s docstring:

>>> print copy.copy.__doc__
Shallow copy operation on arbitrary Python objects.

 See the module's __doc__ string for more info.

The advantage of using help over just examining the docstring directly like this is that you
get more info, such as the function signature (that is, what arguments it takes). Try to call
help(copy) (on the module itself) and see what you get. It prints out a lot of information, including
a thorough discussion of the difference between copy and deepcopy (essentially that deepcopy(x)
makes copies of the values stored in x as attributes and so on, while copy(x) just copies x, binding
the attributes of the copy to the same values as those of x).

Documentation
A natural source for information about a module is, of course, its documentation. I’ve postponed
the discussion of documentation because it’s often much quicker to just examine the module
a bit yourself first. For example, you may wonder, “What were the arguments to range again?”
Instead of searching through a Python book or the standard Python documentation for a
description of range, you can just check it directly:

>>> print range.__doc__
range([start,] stop[, step]) -> list of integers

Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2,..., j-1]; start (!) defaults to 0.
When step is given, it specifies the increment (or decrement).
For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

214 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

You now have a precise description of the range function, and because you probably had
the Python interpreter running already (wondering about functions like this usually happens
while you are programming), accessing this information took just a couple of seconds.

However, not every module and every function has a good docstring (although it should),
and sometimes you may need a more thorough description of how things work. Most modules
you download from the Web have some associated documentation. In my opinion, some of the
most useful documentation for learning to program in Python is the Python Library Reference,
which describes all of the modules in the standard library. If I want to look up some fact about
Python, nine times out of ten, I find it there. The library reference is available for online browsing
(at http://python.org/doc/lib) or for download, as are several other standard documents
(such as the Python Tutorial, or the Python Language Reference). All of the documentation is
available from the Python Web site, at http://python.org/doc.

Use the Source
The exploration techniques I’ve discussed so far will probably be enough for most cases. But
those of you who wish to truly understand the Python language may want to know things about
a module that can’t be answered without actually reading the source code. Reading source
code is in fact one of the best ways to learn Python—besides coding yourself.

Doing the actual reading shouldn’t be much of a problem, but where is the source? Let’s
say you wanted to read the source code for the standard module copy. Where would you find it?
One solution would be to examine sys.path again, and actually look for it yourself, just like the
interpreter does. A faster way is to examine the module’s __file__ property:

>>> print copy.__file__
C:\Python24\lib\copy.py

■Note If the file name ends with .pyc, just use the corresponding file whose name ends with .py.

There it is! You can open the copy.py file in your code editor (for example, IDLE) and start
examining how it works.

■Caution When opening a standard library file in a text editor like this, you run the risk of accidentally
modifying it. Doing so might break it, so when you close the file, make sure that you don’t save any changes
you might have made.

Note that some modules don’t have any Python source you can read. They may be built
into the interpreter (such as the sys module) or they may be written in the C programming
language. (The C source code is also available, but that’s beyond the scope of this book. See
Chapter 17 for more information on extending Python using C.)

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 215

The Standard Library: A Few Favorites
Chances are that you’re beginning to wonder what the title of this chapter means. The phrase
was originally coined by Frank Stajano and refers to Python’s copious standard library. When
you install Python, you get lots of useful modules (the batteries) for “free.” Because there are so
many ways of getting more information about these modules (as explained in the first part of
this chapter), I won’t include a full reference here (which would take up far too much space
anyway), but I’ll describe a few of my favorite standard modules to whet your appetite for
exploration. You’ll encounter more standard modules in the project chapters (Chapter 20 and
later). The module descriptions are not complete but highlight some of the interesting features
of each module.

sys
This module gives you access to variables and functions that are closely linked to the Python
interpreter. Some of these are shown in Table 10-2.

The variable sys.argv contains the arguments passed to the Python interpreter, including
the script name.

The function sys.exit exits the current program. (If called within a try/finally block, the
finally clause is executed.) You can supply an integer to indicate whether the program succeeded
or not—a UNIX convention. You’ll probably be fine in most cases if you rely on the default
(which is zero, indicating success). Alternatively, you can supply a string, which is used as an
error message and can be very useful for a user trying to figure out why the program halted;
then, the program exits with that error message and a code indicating failure.

The mapping sys.modules maps module names to actual modules. It only applies to currently
imported modules.

The module variable sys.path was discussed earlier in this chapter. It’s a list of strings, in
which each string is the name of a directory where the interpreter will look for modules when
an import statement is executed.

Table 10-2. Some Important Functions and Variables in the sys Module

Function/Variable Description

argv The command-line arguments, including the script name

exit([arg]) Exits the current program, optionally with a given return value or
error message

modules A dictionary mapping module names to loaded modules

path A list of directory names where modules can be found

platform Contains a platform identifier such as sunos5 or win32

stdin Standard input stream—a file-like object

stdout Standard output stream—a file-like object

stderr Standard error stream—a file-like object

216 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

The module variable sys.platform (a string) is simply the name of the “platform” the
interpreter is running on. This may be either a name indicating an operating system (such as
sunos5 or win32) or it may indicate some other kind of platform, such as a Java virtual machine
(for example, java1.4.0) if you’re running Jython.

The module variables sys.stdin, sys.stdout, and sys.stderr are file-like stream objects.
They represent the standard UNIX concepts of standard input, standard output, and standard
error. To put it simply, sys.stdin is where Python gets its input (used in the functions input
and raw_input, for example), and sys.stdout is where it prints to. You learn more about files
(and these three streams) in Chapter 11.

Example

Printing the arguments in reverse order. When you call a Python script from the command line, you may add
some arguments after it—the so-called command-line arguments. These will then be placed in the list sys.argv,
with the name of the Python script as sys.argv[0]. Printing these out in reverse order is pretty simple, as you can
see in Listing 10-5.

Listing 10-5. Reversing and Printing Command-Line Arguments

reverseargs.py
import sys
args = sys.argv[1:]
args.reverse()
print ' '.join(args)

As you can see, I make a copy of sys.argv. You can modify the original, but in general it’s safer not to because
other parts of the program may also rely on sys.argv containing the original arguments. Notice also that I skip the
first element of sys.argv—the name of the script. I reverse the list with args.reverse(), but I can’t print the
result of that operation. It is an in-place modification that returns None. Finally, to make the output prettier, I use the
join string method. Let’s try the result (assuming a UNIX shell here, but it will work equally well at an MS-DOS
prompt, for example):

$ python reverseargs.py this is a test
test a is this

os
The os module gives you access to several operating system services. The os module is extensive,
and only a few of the most useful functions and variables are described in Table 10-3. In addition to
these, os and its submodule os.path contain several functions to examine, construct, and remove
directories and files. For more information about this functionality, see the standard library
documentation.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 217

■Tip A useful function for traversing directories is os.walk. Check it out in the Python Library Reference.

The mapping os.environ contains environment variables described earlier in this chapter.
For example, to access the environment variable PYTHONPATH, you would use the expression
os.environ['PYTHONPATH']. This mapping can also be used to change environment variables,
although not all platforms support this.

The function os.system is used to run external programs. There are other functions for
executing external programs, including execv, which exits the Python interpreter, yielding
control to the executed program, and popen, which creates a file-like connection to the program.
For more information about these functions, consult the standard library documentation.

■Tip The subprocess module is a recent addition to Python, which collects the functionality of the
os.system, execv, and popen functions.

The module variable os.sep is a separator used in pathnames. The standard separator in
UNIX is '/', the standard in Windows is '\\' (the Python syntax for a single backslash), and in
Mac OS, it is ':'. (On some platforms, os.altsep contains an alternate path separator, such as
'/' in Windows.)

You use os.pathsep when grouping several paths, as in PYTHONPATH. The pathsep is used to
separate the pathnames: ':' in UNIX, ';' in Windows, and '::' in Mac OS.

The module variable os.linesep is the line separator string used in text files. In UNIX this
is a single newline character ('\n'), in Mac OS it’s a single carriage return character ('\r'), and
in Windows it’s the combination of a carriage return and a newline ('\r\n').

The urandom function uses a system-dependent source of “real” (or, at least, cryptographically
strong) randomness. If your platform doesn’t support it, you’ll get a NotImplementedError.

Table 10-3. Some Important Functions and Variables in the os Module

Function/Variable Description

environ Mapping with environment variables

system(command) Executes an OS command in a subshell

sep Separator used in paths

pathsep Separator to separate paths

linesep Line separator ('\n', '\r', or '\r\n')

urandom(n) Returns n bytes of cryptographically strong random data

218 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Example

Starting a Web browser. The system command can be used to execute any external program, which is very useful
in environments such as UNIX where you can execute programs (or commands) from the command line to list the
contents of a directory, send e-mail, and so on. But it can be useful for starting programs with graphical user inter-
faces, too—such as a Web browser. In UNIX, you can do the following (provided that you have a browser at /usr/
bin/firefox):

os.system('/usr/bin/firefox')

A Windows version would be (again use the path of a browser you have installed)

os.system(r'c:\"Program Files"\"Mozilla Firefox"\firefox.exe')

Note that I’ve been careful about enclosing Program Files and Mozilla Firefox in quotes; otherwise DOS
(which handles the command) balks at the whitespace. (This may be important for directories in your PYTHONPATH
as well.) Note also that you have to use backslashes here because DOS gets confused by forward slashes. If you run
this, you will notice that the browser tries to open a Web site named Files"\Mozilla...—the part of the command
after the whitespace. Also, if you try to run this from IDLE, a DOS window appears, but the browser doesn’t start until
you close that DOS window. All in all, not exactly ideal behavior.

Another function that suits the job better is the Windows-specific function os.startfile:

os.startfile(r' c:\Program Files\Mozilla Firefox\firefox.exe')

As you can see, os.startfile accepts a plain path, even if it contains whitespace. (That is, don’t enclose
“Program Files” in quotes as in the os.system example.)

Note that in Windows, your Python program keeps on running after the external program has been started by
os.system (or os.startfile), whereas in UNIX, your Python program waits for the os.system command
to finish.

A BETTER SOLUTION: WEBBROWSER

The os.system function is useful for a lot of things, but for the specific task of launching a Web browser
there’s an even better solution: the webbrowser module. It contains a function called open that lets you auto-
matically launch a Web browser to open the given URL. For example, if you want your program to open the
Python Web site in a Web browser (either starting a new browser or using one that is already running), you
simply use

import webbrowser
webbrowser.open('http://www.python.org')

and the page should pop up. Pretty nifty, huh?

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 219

fileinput
You learn a lot about reading from and writing to files in Chapter 11, but here is a sneak preview.
The fileinput module enables you to easily iterate over all the lines in a series of text files. If
you call your script like this (assuming a UNIX command line):

$ python some_script.py file1.txt file2.txt file3.txt

you will be able to iterate over the lines of file1.txt through file3.txt in turn. You can also
iterate over lines supplied to standard input (sys.stdin, remember?), for example, in a UNIX
pipe (using the standard UNIX command cat):

$ cat file.txt | python some_script.py

If you use fileinput, this way of calling your script (with cat in a UNIX pipe) works just as
well as the previous one (supplying the file names as command-line arguments to your script).
The most important functions of the fileinput module are described in Table 10-4.

The function fileinput.input is the most important of the functions. It returns an object
that you can iterate over in a for loop. If you don’t want the default behavior (in which fileinput
finds out which files to iterate over), you can supply one or more file names to this function
(as a sequence). You can also set the inplace parameter to a true value (inplace=True) to enable
in-place processing. For each line you access, you’ll have to print out a replacement, which will
be put back into the current input file. The optional backup argument gives a file name extension to
a backup file created from the original file when you do in-place processing.

The function fileinput.filename returns the file name of the file you are currently in (that
is, the file that contains the line you are currently processing).

The function fileinput.lineno returns the number of the current line. This count is
cumulative so that when you are finished with one file and begin processing the next, the line
number is not reset but starts at one more than the last line number in the previous file.

Table 10-4. Some Important Functions in the fileinput Module

Function Description

input([files[, inplace[, backup]]) Facilitates iteration over lines in multiple input
streams

filename() Returns name of current file

lineno() Returns current (cumulative) line number

filelineno() Returns line number within current file

isfirstline() Checks whether current line is first in file

isstdin() Checks whether last line was from sys.stdin

nextfile() Closes current file and moves to the next

close() Closes the sequence

220 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

The function fileinput.filelineno returns the number of the current line within the current
file. Each time you are finished with one file and begin processing the next, the file line number
is reset, and restarts at 1.

The function fileinput.isfirstline returns a true value if the current line is the first line
of the current file—and a false value otherwise.

The function fileinput.isstdin returns a true value if the current file is sys.stdin and
false otherwise.

The function fileinput.nextfile closes the current file and skips to the next one. The
lines you skip do not count against the line count. This can be useful if you know that you are
finished with the current file—for example, if each file contains words in sorted order, and you
are looking for a specific word. If you have passed the word’s position in the sorted order, you
can safely skip to the next file.

The function fileinput.close closes the entire chain of files and finishes the iteration.

Example

Numbering the lines of a Python script. Let’s say you have written a Python script and you want to number the
lines. Because you want the program to keep working after you’ve done this, you have to add the line numbers in
comments to the right of each line. To line them up, you can use string formatting. Let’s allow each program line to
get 40 characters maximum and add the comment after that. The program in Listing 10-6 shows a simple way of
doing this with fileinput and the inplace parameter.

Listing 10-6. Adding Line Numbers to a Python Script

numberlines.py

import fileinput

for line in fileinput.input(inplace=True):
 line = line.rstrip()
 num = fileinput.lineno()
 print '%-40s # %2i' % (line, num)

If you run this program on itself, like this:

$ python numberlines.py numberlines.py

you end up with the program in Listing 10-7. Note that the program itself has been modified, and that if you run it
like this several times, you end up with multiple numbers on each line. Recall that rstrip is a string method that
returns a copy of a string, where all the whitespace on the right has been removed (see the section “String
Methods” in Chapter 3 and Table B-6 in Appendix B).

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 221

Listing 10-7. The Line Numbering Program with Line Numbers Added

numberlines.py # 1
 # 2
import fileinput # 3
 # 4
for line in fileinput.input(inplace=1): # 5
 line = line.rstrip() # 6
 num = fileinput.lineno() # 7
 print '%-40s # %2i' % (line, num) # 8

■Caution Be careful about using the inplace parameter—it’s an easy way to ruin a file. You should test
your program carefully without setting inplace (this will simply print out the result), making sure the program
works before you let it modify your files.

For another example using fileinput, see the section about the random module, later in this chapter.

Sets, Heaps, and Deques
There are many useful data structures around, and Python supports some of the more common
ones. Some of these, such as dictionaries (or hash tables) and lists (or dynamic arrays), are integral
to the language. Others, although somewhat more peripheral, can still come in handy sometimes.

Sets

Sets were introduced in Python 2.3, through the Set class in the sets module. Although you
may come upon Set instances in existing code, there is really very little reason to use them
yourself unless you want to be backward compatible; in Python 2.3 sets were made part of the
language, through the set type. So, there’s no longer any need to import the sets module—you
can just create sets directly:

>>> set(range(10))
set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Sets are constructed from a sequence (or some other iterable object). Their main use lies
in checking membership, and thus duplicates are ignored:

>>> set([0, 1, 2, 3, 0, 1, 2, 3, 4, 5])
set([0, 1, 2, 3, 4, 5])

222 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Just as with dictionaries, the ordering of set elements is quite arbitrary, and shouldn’t be
relied on:

>>> set(['fee', 'fie', 'foe'])
set(['foe', 'fee', 'fie'])

In addition to checking for membership, you can perform various standard set operations
(which you may know from mathematics) such as union and intersection, either by using methods
or by using the same operations as you would for bit operations on integers (see Appendix B).
For example, you can find the union of two sets using either the union method of one of them
or the bitwise OR operator, |:

>>> a = set([1, 2, 3])
>>> b = set([2, 3, 4])
>>> a.union(b)
set([1, 2, 3, 4])
>>> a | b
set([1, 2, 3, 4])

Here are some other methods and their corresponding operators; the names should make
it clear what they mean:

>>> c = a & b
>>> c.issubset(a)
True
>>> c <= a
True
>>> c.issuperset(a)
False
>>> c >= a
False
>>> a.intersection(b)
set([2, 3])
>>> a & b
set([2, 3])
>>> a.difference(b)
set([1])
>>> a - b
set([1])
>>> a.symmetric_difference(b)
set([1, 4])
>>> a ^ b
set([1, 4])
>>> a.copy()
set([1, 2, 3])
>>> a.copy() is a
False

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 223

There are various in-place operations as well, with corresponding methods, as well as the
basic methods add and remove. For more information, see the Python Library Reference, in the
section about set types (http://python.org/doc/lib/types-set.html).

■Tip If you need a function for finding, say, the union of two sets, you can simply use the unbound version
of the union method, from the set type. This could be useful, for example, in concert with reduce:

>>> mySets = []
>>> for i in range(10):
... mySets.append(set(range(i,i+5)))
...
>>> reduce(set.union, mySets)
set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])

Sets are mutable, and may therefore not be used, for example, as keys in dictionaries.
Another problem is that sets themselves may only contain immutable (hashable) values, and
thus may not contain other sets. Because sets of sets often occur in practice, this is something
of a problem . . . Luckily, there is the frozenset type, which represents immutable (and, therefore,
hashable) sets:

>>> a = set()
>>> b = set()
>>> a.add(b)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: set objects are unhashable
>>> a.add(frozenset(b))

The frozenset constructor creates a copy of the given set, and is useful whenever you want
to use a set either as a member of another set or as the key to a dictionary.

Heaps

Another well-known data structure is the heap, a kind of priority queue. A priority queue lets
you add objects in an arbitrary order and at any time (possibly in-between the adding) find
(and possibly remove) the smallest element. It does so much more efficiently than, say, using
min on a list.

In fact, there is no separate heap type in Python—only a module with some heap-
manipulating functions. The module is called heapq (with the q standing for queue), and it
contains six functions, the first four of which are directly related to heap manipulation. You
must use a list as the heap object itself.

The heappush function is used to add an item to a heap. Note that you shouldn’t use it on
any old list—only one that has been built through the use of the various heap functions. The
reason for this is that the order of the elements is important (even though it may look a bit
haphazard; the elements aren’t exactly sorted).

224 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

>>> from heapq import *
>>> from random import shuffle
>>> data = range(10)
>>> shuffle(data)
>>> heap = []
>>> for n in data:
... heappush(heap, n)
>>> heap
[0, 1, 3, 6, 2, 8, 4, 7, 9, 5]
>>> heappush(heap, 0.5)
>>> heap
[0, 0.5, 3, 6, 1, 8, 4, 7, 9, 5, 2]

■Note The order of the elements isn’t as arbitrary as it seems. They aren’t in strictly sorted order, but there
is one guarantee made: the element at position i is always greater than the one in position i // 2 (or,
conversely, it’s smaller than the elements at positions 2*i and 2*i + 1). This is the basis for the underlying
heap algorithm. This is called the heap property.

The heappop function pops off the smallest element, which is always found at index 0, and
makes sure that the smallest of the remaining element takes over this position (while preserving
the heap property mentioned in the previous note). Even though popping the first element of a
list isn’t efficient in general, it’s not a problem here, because heappop does some nifty shuffling
behind the scenes:

>>> heappop(heap)
0
>>> heappop(heap)
0.5
>>> heappop(heap)
1
>>> heap
[2, 5, 3, 6, 9, 8, 4, 7]

The heapify function takes an arbitrary list and makes it a legal heap (that is, it imposes the
heap property mentioned in the previous note) through the least possible amount of shuffling.
If you don’t build your heap from scratch with heappush, this is the function to use before starting
to use heappush and heappop:

>>> heap = [5, 8, 0, 3, 6, 7, 9, 1, 4, 2]
>>> heapify(heap)
>>> heap
[0, 1, 5, 3, 2, 7, 9, 8, 4, 6]

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 225

The heapreplace function is not quite as commonly used as the others. It pops the smallest
element off the heap and then pushes a new element onto it. This is more efficient than a
heappop followed by a heappush:

>>> heapreplace(heap, 0.5)
0
>>> heap
[0.5, 1, 5, 3, 2, 7, 9, 8, 4, 6]
>>> heapreplace(heap, 10)
0.5
>>> heap
[1, 2, 5, 3, 6, 7, 9, 8, 4, 10]

The remaining two functions of the heapq module, nlargest(n, iter) and
nsmallest(n, iter), are used to find the n largest or smallest elements, respectively, of any
iterable object iter. You could do this by using sorting (for example, using the sorted function)
and slicing, but the heap algorithm is faster and more memory-efficient (and, not to mention,
easier to use).

Deques (and Other Collections)

Double-ended queues, or deques, can be useful when you need to remove elements in the
order in which they were added. In Python 2.4, the collections module was added, which
contains the deque type.

■Note As of Python 2.4, the collections module only contains the deque type. Possible future additions
are B-trees and Fibonacci heaps.

A deque is created from an iterable object (just like sets) and has several useful methods:

>>> from collections import deque
>>> q = deque(range(5))
>>> q.append(5)
>>> q.appendleft(6)
>>> q
deque([6, 0, 1, 2, 3, 4, 5])
>>> q.pop()
5
>>> q.popleft()
6
>>> q.rotate(3)
>>> q
deque([2, 3, 4, 0, 1])
>>> q.rotate(-1)
>>> q
deque([3, 4, 0, 1, 2])

226 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

The reason for the usefulness of the deque is that it allows appending and popping efficiently
at the beginning (to the left), as opposed to lists. As a nice side effect, you can also rotate the
elements (that is, shift them to the right or left, wrapping around the ends) efficiently. Deque
objects also have extend and extendleft methods, with extend working like the corresponding
list method, and extendleft working analogously to appendleft. Note that the elements in the
iterable used in extendleft will appear in the deque in reverse order.

time
The time module contains functions for, among other things, getting the current time, manip-
ulating times and dates, and reading dates from strings and formatting dates as strings. Dates
can be represented as either a real number (the seconds since 0 hours, January 1 in the “epoch,”
a platform-dependent year; for UNIX, it’s 1970), or a tuple containing nine integers. These integers
are explained in Table 10-5. For example, the tuple

(2002, 1, 21, 12, 2, 56, 0, 21, 0)

represents January 21, 2002, at 12:02:56, which is a Monday, and the 21st day of the year.
(No daylight savings.)

Some of these values need some explaining: The range for seconds is 0–61 to account for
leap seconds and double leap seconds. The Daylight Savings number is a Boolean value (true
or false), but if you use –1, mktime (a function that converts such a tuple to a timestamp measured
in seconds since the epoch) will probably get it right. Some of the most important functions in
the time module are described in Table 10-6.

Table 10-5. The Fields of Python Date Tuples

Index Field Value

0 Year For example, 2000, 2001, and so on

1 Month In the range 1–12

2 Day In the range 1–31

3 Hour In the range 0–23

4 Minute In the range 0–59

5 Second In the range 0–61

6 Weekday In the range 0–6, where Monday is 0

7 Julian day In the range 1–366

8 Daylight Savings 0, 1, or –1

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 227

The function time.asctime formats the current time as a string, such as

>>> time.asctime()
'Fri Dec 21 05:41:27 2001'

You can also supply a date tuple (such as those created by localtime) if you don’t want the
current time. (For more elaborate formatting, see the strftime function, described in the standard
documentation.)

The function time.localtime converts a real number (seconds since epoch) to a date tuple,
local time. If you want universal time, use gmtime instead.

The function time.mktime converts a date tuple to the time since epoch in seconds; it is the
inverse of localtime.

The function time.sleep makes the interpreter wait for a given number of seconds.
The function time.strptime converts a string of the format returned by asctime to a date

tuple. (The optional format argument follows the same rules as those for strftime. See the
standard documentation.)

The function time.time returns the current (universal) time as seconds since the epoch.
Even though the epoch may vary from platform to platform, you can reliably time something
by storing the result of time before and after the event (such as a function call) and then computing
the difference. For an example of these functions, see the next section, which covers the random
module.

OTHER TIME FUNCTIONS

The functions shown in Table 10-6 are just a selection of those available from the time module. Most of the
functions in that module perform tasks similar to or related to those described in this section. If you need
something not covered by the functions described here, you should take a look at the section about the time
module in the standard library reference (http://python.org/doc/lib/module-time.html); chances
are you may find exactly what you are looking for.

There are also some more recent time-related modules available: datetime and timeit. You can find
more information about both in the library reference, and timeit is also discussed briefly in Chapter 16.

Table 10-6. Some Important Functions in the time Module

Function Description

asctime([tuple]) Converts time tuple to a string

localtime([secs]) Converts seconds to a date tuple, local time

mktime(tuple) Converts time tuple to local time

sleep(secs) Sleeps (does nothing) for secs seconds

strptime(string[, format]) Parses a string into a time tuple

time() Current time (seconds since the epoch, UTC)

228 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

random
The random module contains functions that return random numbers, which can be useful for
simulations or any program that generates random output.

■Note Actually, the numbers generated are pseudo-random. That means that while they appear completely
random, there is a predictable system that underlies them. However, because the module is so good at
pretending to be random, you probably won’t ever have to worry about this (unless you want to use these
numbers for strong-cryptography purposes, in which case they may not be “strong” enough to withstand
determined attack—but if you’re into strong cryptography, you surely don’t need me to explain such elementary
issues). If you need real randomness, you should check out the urandom function of the os module. The class
SystemRandom in the random module is based on the same kind of functionality, and gives you data that is
close to real randomness.

Some important functions in this module are shown in Table 10-7.

The function random.random is one of the most basic random functions; it simply returns
a pseudo-random number n such that 0 < n < 1. Unless this is exactly what you need, you
should probably use one of the other functions, which offer extra functionality. The function
random.getrandbits returns a given number of bits (binary digits), in the form of a long integer.
This is probably mostly useful if you’re really into random stuff (for example, working with
cryptography).

The function random.uniform, when supplied with two numerical parameters a and b,
returns a random (uniformly distributed) real number n such that a < n < b. So, for example,
if you want a random angle, you could use uniform(0,360).

The function random.randrange is the standard function for generating a random integer
in the range you would get by calling range with the same arguments. For example, to get a

Table 10-7. Some Important Functions in the random Module

Function Description

random() Returns a random real number n such that 0 ≤ n < 1

getrandbits(n) Returns n random bits, in the form of a long integer

uniform(a, b) Returns a random real number n such that a ≤ n < b

randrange([start], stop, [step]) Returns a random number from range(start, stop,
step)

choice(seq) Returns a random element from the sequence seq

shuffle(seq[, random]) Shuffles the sequence seq in place

sample(seq, n) Chooses n random, unique elements from the
sequence seq

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 229

random number in the range from 1 to 10 (inclusive), you would use randrange(1,11) (or, alter-
natively, randrange(10)+1), and if you want a random odd positive integer lower than 20, you
would use randrange(1,20,2).

The function random.choice chooses (uniformly) a random element from a given sequence.
The function random.shuffle shuffles the elements of a (mutable) sequence randomly,

such that every possible ordering is equally likely.
The function random.sample chooses (uniformly) a given number of elements from a given

sequence, making sure that they’re all different.

■Note For the statistically inclined, there are other functions similar to uniform that return random numbers
sampled according to various other distributions, such as betavariate, exponential, Gaussian, and several others.

Examples

Generating a random date in a given range. In the following examples, I use several of the functions from the
time module described previously. First, let’s get the real numbers representing the limits of the time interval (the
year 2005). You do that by expressing the date as a time tuple (using -1 for day of the week, day of the year, and
daylight savings, making Python calculate that for itself) and calling mktime on these tuples:

from random import *
from time import *
date1 = (2005, 1, 1, 0, 0, 0, -1, -1, -1)
time1 = mktime(date1)
date2 = (2006, 1, 1, 0, 0, 0, -1, -1, -1)
time2 = mktime(date2)

Then you generate a random number uniformly in this range (the upper limit excluded):

>>> random_time = uniform(time1, time2)

Then, you simply convert this number back to a legible date:

>>> print asctime(localtime(random_time))
Mon Jun 24 21:35:19 2005

Creating an electronic die-throwing machine. For this example, let’s ask the user how many dice to throw, and
how many sides each one should have. The die-throwing mechanism is implemented with randrange and a for
loop:

from random import randrange
num = input('How many dice? ')
sides = input('How many sides per die? ')
sum = 0
for i in range(num): sum += randrange(sides) + 1
print 'The result is', sum

230 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

If you put this in a script file and run it, you get an interaction something like the following:

How many dice? 3
How many sides per die? 6
The result is 10

Creating a fortune cookie program. Assume that you have made a text file in which each line of text contains a
fortune. Then you can use the fileinput module described earlier to put the fortunes in a list, and then select one
randomly:

fortune.py
import fileinput, random
fortunes = list(fileinput.input())
print random.choice(fortunes)

In UNIX, you could test this on the standard dictionary file /usr/dict/words to get a random word:

$ python fortune.py /usr/dict/words
dodge

Creating an electronic deck of cards. You want your program to deal you cards, one at a time, each time you
press Enter on your keyboard. Also, you want to make sure that you don’t get the same card more than once. First,
you make a “deck of cards”—a list of strings:

>>> values = range(1, 11) + 'Jack Queen King'.split()
>>> suits = 'diamonds clubs hearts spades'.split()
>>> deck = ['%s of %s' % (v, s) for v in values for s in suits]

The deck you just created isn’t very suitable for a game of cards. Let’s just peek at some of the cards:

>>> from pprint import pprint
>>> pprint(deck[:12])
['1 of diamonds',
 '1 of clubs',
 '1 of hearts',
 '1 of spades',
 '2 of diamonds',
 '2 of clubs',
 '2 of hearts',
 '2 of spades',
 '3 of diamonds',
 '3 of clubs',
 '3 of hearts',
 '3 of spades']

A bit too ordered, isn’t it? That’s easy to fix:

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 231

>>> from random import shuffle
>>> shuffle(deck)
>>> pprint(deck[:12])
['3 of spades',
 '2 of diamonds',
 '5 of diamonds',
 '6 of spades',
 '8 of diamonds',
 '1 of clubs',
 '5 of hearts',
 'Queen of diamonds',
 'Queen of hearts',
 'King of hearts',
 'Jack of diamonds',
 'Queen of clubs']

Note that I’ve just printed the 12 first cards here, to save some space. Feel free to take a look at the whole deck
yourself.

Finally, to get Python to deal you a card each time you press Enter on your keyboard, until there are no more cards,
you simply create a little while loop. Assuming that you put the code needed to create the deck into a program file,
you could simply add the following at the end:

while deck: raw_input(deck.pop())

■Note If you try the while loop shown here in the interactive interpreter, you’ll notice that an empty string
gets printed out every time you press Enter because raw_input returns what you write (which is nothing),
and that will get printed. In a normal program, this return value from raw_input is simply ignored. To have
it “ignored” interactively, too, just assign the result of raw_input to some variable you won’t look at again
and name it something like ignore.

shelve
In the next chapter, you learn how to store data in files, but if you want a really simple storage
solution, the shelve module can do most of the work for you. All you have to do is supply it with
a file name. The only function of interest in shelve is open. When called (with a file name) it
returns a Shelf object, which you can use to store things. Just treat it as a normal dictionary
(except that the keys must be strings), and when you’re done (and want things saved to disk)
you call its close method.

A Potential Trap

It is important to realize that the object returned by shelve.open is not an ordinary mapping, as
the following example demonstrates:

232 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

>>> import shelve
>>> s = shelve.open('test.dat')
>>> s['x'] = ['a', 'b', 'c']
>>> s['x'].append('d')
>>> s['x']
['a', 'b', 'c']

Where did the 'd' go?
The explanation is simple: When you look up an element in a shelf object, the object is

reconstructed from its stored version; and when you assign an element to a key, it is stored.
What happened in the preceding example was the following:

1. The list ['a', 'b', 'c'] was stored in s under the key 'x'.

2. The stored representation was retrieved, a new list was constructed from it, and 'd' was
appended to the copy. This modified version was not stored!

3. Finally, the original is retrieved again—without the 'd'.

To correctly modify an object that is stored using the shelve module, you must bind a
temporary variable to the retrieved copy, and then store the copy again after it has been modified:

>>> temp = s['x']
>>> temp.append('d')
>>> s['x'] = temp
>>> s['x']
['a', 'b', 'c', 'd']

Thanks to Luther Blissett for pointing this out.
From Python 2.4 onward, there is another way around this problem: Setting the writeback

parameter of the open function to true. If you do, all of the data structures that you read from or
assign to the shelf will be kept around in memory (cached) and only written back to disk when
you close the shelf. If you’re not working with huge data, and you don’t want to worry about
these things, setting writeback to true (and making sure you close your shelf at the end) may be
a good idea.

Example

Listing 10-8 shows a simple database application that uses the shelve module.

Listing 10-8. A Simple Database Application

database.py
import sys, shelve

def store_person(db):
 """
 Query user for data and store it in the shelf object
 """

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 233

 pid = raw_input('Enter unique ID number: ')
 person = {}
 person['name'] = raw_input('Enter name: ')
 person['age'] = raw_input('Enter age: ')
 person['phone'] = raw_input('Enter phone number: ')

 db[pid] = person

def lookup_person(db):
 """
 Query user for ID and desired field, and fetch the corresponding data from
 the shelf object
 """
 pid = raw_input('Enter ID number: ')
 field = raw_input('What would you like to know? (name, age, phone) ')
 field = field.strip().lower()
 print field.capitalize() + ':', \
 db[pid][field]

def print_help():
 print 'The available commands are:'
 print 'store : Stores information about a person'
 print 'lookup : Looks up a person from ID number'
 print 'quit : Save changes and exit'
 print '? : Prints this message'

def enter_command():
 cmd = raw_input('Enter command (? for help): ')
 cmd = cmd.strip().lower()
 return cmd

def main():
 database = shelve.open('C:\\database.dat')
 try:
 while True:
 cmd = enter_command()
 if cmd == 'store':
 store_person(database)
 elif cmd == 'lookup':
 lookup_person(database)
 elif cmd == '?':
 print_help()
 elif cmd == 'quit':
 return
 finally:
 database.close()

if __name__ == '__main__': main()

234 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

■Caution As you can see, the program specifies the file name C:\database.dat. If you, by any chance,
have a database by that name that the shelve module can use, it will—and that database will be modified.
So make sure that you use a file name for your database that isn’t in use already. After running this program,
the proper file appears.

The program shown in Listing 10-8 has several interesting features:

• I have wrapped everything in functions to make the program more structured. (A possible improvement
is to group those functions as the methods of a class.)

• I have put the main program in the main function, which is called only if __name__ == '__main__'.
That means you can import this as a module and then call the main function from another program.

• I open a database (shelf) in the main function, and then pass it as a parameter to the other functions
that need it. I could have used a global variable, too, because this program is so small, but it’s better to
avoid global variables in most cases, unless you have a reason to use them.

• After reading in some values, I make a modified version by calling strip and lower on them because
if a supplied key is to match one stored in the database, the two must be exactly alike. If you always use
strip and lower on what the user enters, you can allow him or her to be sloppy about using uppercase
or lowercase letters and additional whitespace. Also, note that I’ve used capitalize when printing the
field name.

• I have used try and finally to ensure that the database is closed properly. You never know when
something might go wrong (and you get an exception), and if the program terminates without closing
the database properly, you may end up with a corrupt database file that is essentially useless. By using
try and finally, you avoid that.

So, let’s take this database out for a spin. Here is the interaction between the program and me:

Enter command (? for help): ?
The available commands are:
store : Stores information about a person
lookup : Looks up a person from ID number
quit : Save changes and exit
? : Prints this message
Enter command (? for help): store
Enter unique ID number: 001
Enter name: Mr. Gumby
Enter age: 42
Enter phone number: 555-1234
Enter command (? for help): lookup
Enter ID number: 001
What would you like to know? (name, age, phone) phone
Phone: 555-1234
Enter command (? for help): quit

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 235

This interaction isn’t terribly interesting. I could have done exactly the same thing with an ordinary dictionary instead
of the shelf object. But now that I’ve quit the program, let’s see what happens when I restart it—perhaps the
following day?

Enter command (? for help): lookup
Enter ID number: 001
What would you like to know? (name, age, phone) name
Name: Mr. Gumby
Enter command (? for help): quit

As you can see, the program reads in the file I created the first time, and Mr. Gumby is still there!

Feel free to experiment with this program, and see if you can extend its functionality and improve its user-friendliness.
Perhaps you can think of a version that you have use for yourself? How about a database of your record collection?
Or a database to help you keep track of which friends have borrowed which of your books? (I know I could use that
last one.)

re

Some people, when confronted with a problem, think “I know, I’ll use regular
expressions.” Now they have two problems.

—Jamie Zawinski

The re module contains support for regular expressions. If you’ve heard about regular expres-
sions before, you probably know how powerful they are; if you haven’t, prepare to be amazed.

You should note, however, that mastering regular expressions may be a bit tricky at first.
(Okay, very tricky, actually.) The key is to learn about them a little bit at a time—just look up (in
the documentation) the parts you need for a specific task. There is no point in memorizing it all
up front. This section describes the main features of the re module and regular expressions,
and enables you to get started.

■Tip In addition to the standard documentation, Andrew Kuchling’s “Regular Expression HOWTO”
(http://amk.ca/python/howto/regex/) is a useful source of information on regular expressions
in Python.

What Is a Regular Expression?

A regular expression (also called a regex or regexp) is a pattern that can match a piece of text.
The simplest form of regular expression is just a plain string, which matches itself. In other
words, the regular expression 'python' matches the string 'python'. You can use this matching
behavior for such things as searching for patterns in a text, for replacing certain patterns with
some computed values, or for splitting a text into pieces.

236 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

The Wildcard

A regexp can match more than one string, and you create such a pattern by using some special
characters. For example, the period character (dot) matches any character (except a newline),
so the regular expression '.ython' would match both the string 'python' and the string
'jython'. It would also match strings such as 'qython', '+ython', or ' ython' (in which the first
letter is a single space), but not strings such as 'cpython' or 'ython' because the period matches
a single letter, and neither two nor zero.

Because it matches “anything” (any single character except a newline), the period is called
a wildcard.

Escaping Special Characters

When you use special characters such as this, it’s important to know that you may run into
problems if you try to use them as normal characters. For example, imagine you want to match
the string 'python.org'. Do you simply use the pattern 'python.org'? You could, but that would
also match 'pythonzorg', for example, which you probably wouldn’t want. (The dot matches
any character except newline, remember?) To make a special character behave like a normal
one, you escape it, just as I demonstrated how to escape quotes in strings in Chapter 1. You
place a backslash in front of it. Thus, in this example, you would use 'python\\.org', which
would match 'python.org', and nothing else.

■Note To get a single backslash, which is required here by the re module, you need to write two back-
slashes in the string—to escape it from the interpreter. Thus you have two levels of escaping here: (1) from
the interpreter, and (2) from the re module. (Actually, in some cases you can get away with using a single
backslash and have the interpreter escape it for you automatically, but don’t rely on it.) If you are tired of
doubling up backslashes, use a raw string, such as r'python\.org'.

Character Sets

Matching any character can be useful, but sometimes you want more control. You can create a
so-called character set by enclosing a substring in brackets. Such a character set will match any
of the characters it contains, so '[pj]ython' would match both 'python' and 'jython', but nothing
else. You can also use ranges, such as '[a-z]' to match any character from a to z (alphabeti-
cally), and you can combine such ranges by putting one after another, such as '[a-zA-Z0-9]'
to match uppercase and lowercase letters and digits. (Note that the character set will match
only one such character, though.)

To invert the character set, put the character ^ first, as in '[^abc]' to match any character
except a, b, or c.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 237

SPECIAL CHARACTERS IN CHARACTER SETS

In general, special characters such as dots, asterisks, and question marks have to be escaped with a backslash
if you want them to appear as literal characters in the pattern, rather than function as regexp operators. Inside
character sets, escaping these characters is generally not necessary (although perfectly legal). You should,
however, keep in mind the following rules:

You do have to escape the caret (^) if it appears at the beginning of the character set unless you want it
to function as a negation operator. (In other words, don’t place it at the beginning unless you mean it.)

Similarly, the right bracket (]) and the dash (-) must be put either at the beginning of the character set
or escaped with a backslash. (Actually, the dash may also be put at the end, if you wish.)

Alternatives and Subpatterns

Character sets are nice when you let each letter vary independently, but what if you want to
match only the strings 'python' and 'perl'? You can’t specify such a specific pattern with
character sets or wildcards. Instead, you use the special character for alternatives: the “pipe”
character (|). So, your pattern would be 'python|perl'.

However, sometimes you don’t want to use the choice operator on the entire pattern—just
a part of it. To do that, you enclose the part, or subpattern, in parentheses. The previous example
could be rewritten as 'p(ython|erl)'. (Note that the term subpattern can also be used about a
single character.)

Optional and Repeated Subpatterns

By adding a question mark after a subpattern, you make it optional. It may appear in the matched
string, but it isn’t strictly required. So, for example, the (slightly unreadable) pattern

r'(http://)?(www\.)?python\.org'

would match all of the following strings (and nothing else):

'http://www.python.org'
'http://python.org'
'www.python.org'
'python.org'

A few things are worth noting here:

• I’ve escaped the dots, to prevent them from functioning as wildcards.

• I’ve used a raw string to reduce the number of backslashes needed.

• Each optional subpattern is enclosed in parentheses.

• The optional subpatterns may appear or not, independently of each other.

238 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

The question mark means that the subpattern can appear once or not at all. There are a
few other operators that allow you to repeat a subpattern more than once:

So, for example, r'w*\.python\.org' matches 'www.python.org', but also '.python.org',
'ww.python.org', and 'wwwwwww.python.org'. Similarly, r'w+\.python\.org' matches
'w.python.org' but not '.python.org', and r'w{3,4}\.python\.org' matches only
'www.python.org' and 'wwww.python.org'.

■Note The term match is used loosely here to mean that the pattern matches the entire string. The match
function, described in the text that follows, requires only that the pattern matches the beginning of the string.

The Beginning and End of a String

Until now, you’ve only been looking at a pattern matching an entire string, but you can also
try to find a substring that matches the patterns, such as the substring 'www' of the string
'www.python.org' matching the pattern 'w+'. When you’re searching for substrings like this,
it can sometimes be useful to anchor this substring either at the beginning or the end of the
full string. For example, you might want to match 'ht+p' at the beginning of a string, but
not anywhere else. Then you use a caret ('^') to mark the beginning: '^ht+p' would match
'http://python.org' (and 'htttttp://python.org', for that matter) but not 'www.http.org'.
Similarly, the end of a string may be indicated by the dollar sign ('$').

■Note For a complete listing of regexp operators, see the standard library reference, in the section “Regular
Expression Syntax” (http://python.org/doc/lib/re-syntax.html).

Contents of the re Module

Knowing how to write regular expressions isn’t much good if you can’t use them for anything.
The re module contains several useful functions for working with regular expressions. Some of
the most important ones are described in Table 10-8.

(pattern)* pattern is repeated zero or more times

(pattern)+ pattern is repeated one or more times

(pattern){m,n} pattern is repeated from m to n times

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 239

The function re.compile transforms a regular expression (written as a string) to a pattern
object, which can be used for more efficient matching. If you use regular expressions represented
as strings when you call functions such as search or match, they have to be transformed into
regular expression objects internally anyway. By doing this once, with the compile function,
this step is no longer necessary each time you use the pattern. The pattern objects have the
searching/matching functions as methods, so re.search(pat, string) (where pat is a regexp
written as a string) is equivalent to pat.search(string) (where pat is a pattern object created
with compile). Compiled regexp objects can also be used in the normal re functions.

The function re.search searches a given string to find the first substring, if any, that matches
the given regular expression. If one is found, a MatchObject (evaluating to true) is returned;
otherwise None (evaluating to false) is returned. Due to the nature of the return values, the function
can be used in conditional statements, such as

if re.search(pat, string):
 print 'Found it!'

However, if you need more information about the matched substring, you can examine
the returned MatchObject. (More about MatchObjects in the next section.)

The function re.match tries to match a regular expression at the beginning of a given string.
So match('p', 'python') returns true, while match('p', 'www.python.org') returns false. (The
return values are the same as those for search.)

■Note The match function will report a match if the pattern matches the beginning of a string; the
pattern is not required to match the entire string. If you want to do that, you have to add a dollar sign to the
end of your pattern; the dollar sign will match the end of the string and thereby “stretch out” the match.

Table 10-8. Some Important Functions in the re Module

Function Description

compile(pattern[, flags]) Creates a pattern object from a string with
a regexp

search(pattern, string[, flags]) Searches for pattern in string

match(pattern, string[, flags]) Matches pattern at the beginning of string

split(pattern, string[, maxsplit=0]) Splits a string by occurrences of pattern

findall(pattern, string) Returns a list of all occurrences of pattern
in string

sub(pat, repl, string[, count=0]) Substitutes occurrences of pat in string with repl

escape(string) Escapes all special regexp characters in string

240 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

The function re.split splits a string by the occurrences of a pattern. This is similar to the
string method split, except that you allow full regular expressions instead of only a fixed sepa-
rator string. For example, with the string method split you could split a string by the occurrences
of the string ', ' but with re.split you can split on any sequence of space characters and commas:

>>> some_text = 'alpha, beta,,,,gamma delta'
>>> re.split('[,]+', some_text)
['alpha', 'beta', 'gamma', 'delta']

■Note If the pattern contains parentheses, the parenthesized groups are interspersed between the
split substrings.

As you can see from this example, the return value is a list of substrings. The maxsplit
argument indicates the maximum number of splits allowed:

>>> re.split('[,]+', some_text, maxsplit=2)
['alpha', 'beta', 'gamma delta']
>>> re.split('[,]+', some_text, maxsplit=1)
['alpha', 'beta,,,,gamma delta']

The function re.findall returns a list of all occurrences of the given pattern. For example,
to find all words in a string, you could do the following:

>>> pat = '[a-zA-Z]+'
>>> text = '"Hm... Err -- are you sure?" he said, sounding insecure.'
>>> re.findall(pat, text)
['Hm', 'Err', 'are', 'you', 'sure', 'he', 'said', 'sounding', 'insecure']

Or, you could find the punctuation:

>>> pat = r'[.?\-",]+'
>>> re.findall(pat, text)
['"', '...', '--', '?"', ',', '.']

Note that the dash (-) has been escaped so Python won’t interpret it as part of a character
range (such as a–z).

The function re.sub is used to substitute the leftmost, nonoverlapping occurrences of a
pattern with a given replacement. Consider the following example:

>>> pat = '{name}'
>>> text = 'Dear {name}...'
>>> re.sub(pat, 'Mr. Gumby', text)
'Dear Mr. Gumby...'

See the section “Using Group Numbers and Functions in Substitutions” later in this chapter
for information on how to use this function more effectively.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 241

The function re.escape is a utility function used to escape all the characters in a string that
might be interpreted as a regexp operator. Use this if you have a long string with lots of these
special characters and you want to avoid typing a lot of backslashes, or if you get a string from
a user (for example, through the raw_input function) and want to use it as a part of a regexp.
Here is an example of how it works:

>>> re.escape('www.python.org')
'www\\.python\\.org'
>>> re.escape('But where is the ambiguity?')
'But\\ where\\ is\\ the\\ ambiguity\\?'

■Note In Table 10-8 you’ll notice that some of the functions have an optional parameter called flags. This
parameter can be used to change how the regular expressions are interpreted. For more information about
this, see the standard library reference, in the section about the re module at http://python.org/doc/
lib/module-re.html. The flags are described in the subsection “Module Contents.”

Match Objects and Groups

The re functions that try to match a pattern against a section of a string all return MatchObjects
when a match is found. These objects contain information about the substring that matched
the pattern. They also contain information about which parts of the pattern matched which
parts of the substring—and these “parts” are called groups.

A group is simply a subpattern that has been enclosed in parentheses. The groups are
numbered by their left parenthesis. Group zero is the entire pattern. So, in the pattern

'There (was a (wee) (cooper)) who (lived in Fyfe)'

the groups are as follows:

0 There was a wee cooper who lived in Fyfe
1 was a wee cooper
2 wee
3 cooper
4 lived in Fyfe

Typically, the groups contain special characters such as wildcards or repetition operators,
and thus you may be interested in knowing what a given group has matched. For example, in
the pattern

r'www\.(.+)\.com$'

group 0 would contain the entire string, and group 1 would contain everything between 'www.'
and '.com'. By creating patterns like this, you can extract the parts of a string that interest you.

Some of the more important methods of re match objects are described in Table 10-9.

242 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

The method group returns the (sub)string that was matched by a given group in the pattern.
If no group number is given, group 0 is assumed. If only a single group number is given (or you
just use the default, 0), a single string is returned. Otherwise, a tuple of strings corresponding
to the given group numbers is returned.

■Note In addition to the entire match (group 0), you can have only 99 groups, with numbers in the
range 1–99.

The method start returns the starting index of the occurrence of the given group (which
defaults to 0, the whole pattern).

The method end is similar to start, but returns the ending index plus one.
The method span returns the tuple (start, end) with the starting and ending indices of a

given group (which defaults to 0, the whole pattern).
Consider the following example:

>>> m = re.match(r'www\.(.*)\..{3}', 'www.python.org')
>>> m.group(1)
'python'
>>> m.start(1)
4
>>> m.end(1)
10
>>> m.span(1)
(4, 10)

Using Group Numbers and Functions in Substitutions

In the first example using re.sub, I simply replaced one substring with another—something
I could easily have done with the replace string method (described in the section “String Methods”
in Chapter 3). Of course, regular expressions are useful because they allow you to search in a more
flexible manner, but they also allow you to perform more powerful substitutions.

Table 10-9. Some Important Methods of re Match Objects

Method Description

group([group1, ...]) Retrieves the occurrences of the given subpatterns (groups)

start([group]) Returns the starting position of the occurrence of a given group

end([group]) Returns the ending position (an exclusive limit, as in slices) of
the occurrence of a given group

span([group]) Returns both the beginning and ending positions of a group

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 243

The easiest way to harness the power of re.sub is to use group numbers in the substitution
string. Any escape sequences of the form '\\n' in the replacement string are replaced by the
string matched by group n in the pattern. For example, let’s say you want to replace words of
the form '*something*' with 'something', where the former is a normal way of
expressing emphasis in plain text documents (such as e-mail), and the latter is the corresponding
HTML code (as used in Web pages). Let’s first construct the regexp:

>>> emphasis_pattern = r'*([^*]+)*'

Note that regular expressions can easily become hard to read, so using meaningful variable
names (and possibly a comment or two) is important if anyone (including you!) is going to be
able to read the code.

■Tip One way to make your regular expressions more readable is to use the VERBOSE flag in the re func-
tions. This allows you to add whitespace (space characters, tabs, newlines, and so on) to your pattern, which
will be ignored by re—except when you put it in a character class or escape it with a backslash. You can also
put comments in such verbose regexps. The following is a pattern object that is equivalent to the emphasis
pattern, but which uses the VERBOSE flag:

>>> emphasis_pattern = re.compile(r'''
... * # Beginning emphasis tag -- an asterisk
... (# Begin group for capturing phrase
... [^*]+ # Capture anything except asterisks
...) # End group
... * # Ending emphasis tag
... ''', re.VERBOSE)
...

Now that I have my pattern, I can use re.sub to make my substitution:

>>> re.sub(emphasis_pattern, r'\1', 'Hello, *world*!')
'Hello, world!'

As you can see, I have successfully translated the text from plain text to HTML.
But you can make your substitutions even more powerful by using a function as the

replacement. This function will be supplied with the MatchObject as its only parameter, and
the string it returns will be used as the replacement. In other words, you can do whatever you
want to the matched substring, and do elaborate processing to generate its replacement. What
possible use could you have for such power, you ask? Once you start experimenting with regular
expressions, you will surely find countless uses for this mechanism. For one application, see
the “Examples” section that follows.

244 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

GREEDY AND NONGREEDY PATTERNS

The repetition operators are by default greedy; that means that they will match as much as possible. For
example, let’s say I rewrote the emphasis program to use the following pattern:

>>> emphasis_pattern = r'*(.+)*'

This matches an asterisk, followed by one or more letters, and then another asterisk. Sounds perfect,
doesn’t it? But it isn’t:

>>> re.sub(emphasis_pattern, r'\1', '*This* is *it*!')
'This* is *it!'

As you can see, the pattern matched everything from the first asterisk to the last—including the two
asterisks between! This is what it means to be greedy: Take everything you can.

In this case, you clearly don’t want this overly greedy behavior. The solution presented in the preceding
text (using a character set matching anything except an asterisk) is fine when you know that one specific letter
is illegal. But let’s consider another scenario: What if you used the form '**something**' to signify emphasis?
Now it shouldn’t be a problem to include single asterisks inside the emphasized phrase. But how do you avoid
being too greedy?

Actually, it’s quite easy; you just use a nongreedy version of the repetition operator. All the repetition
operators can be made nongreedy by putting a question mark after them:

>>> emphasis_pattern = r'**(.+?)**'
>>> re.sub(emphasis_pattern, r'\1', '**This** is **it**!')
'This is it!'

Here I’ve used the operator +? instead of +, which means that the pattern will match one or more occur-
rences of the wildcard, as before. However, it will match as few as it can, because it is now nongreedy; it will
match only the minimum needed to reach the next occurrence of '**', which is the end of the pattern. As
you can see, it works nicely.

Examples

Finding out who an e-mail is from. Have you ever saved an e-mail as a text file? If you have, you may have seen
that it contains a lot of essentially unreadable text at the top, similar to that shown in Listing 10-9.

Listing 10-9. A Set of (Fictitious) E-mail Headers

From foo@bar.baz Thu Dec 20 01:22:50 2004
Return-Path: <foo@bar.baz>
Received: from xyzzy42.bar.com (xyzzy.bar.baz [123.456.789.42])
 by frozz.bozz.floop (8.9.3/8.9.3) with ESMTP id BAA25436
 for <magnus@bozz.floop>; Thu, 20 Dec 2004 01:22:50 +0100 (MET)
Received: from [43.253.124.23] by bar.baz
 (InterMail vM.4.01.03.27 201-229-121-127-20010626) with ESMTP
 id <20041220002242.ADASD123.bar.baz@[43.253.124.23]>;
 Thu, 20 Dec 2004 00:22:42 +0000

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 245

User-Agent: Microsoft-Outlook-Express-Macintosh-Edition/5.02.2022
Date: Wed, 19 Dec 2004 17:22:42 -0700
Subject: Re: Spam
From: Foo Fie <foo@bar.baz>
To: Magnus Lie Hetland <magnus@bozz.floop>
CC: <Mr.Gumby@bar.baz>
Message-ID: <B8467D62.84F%foo@baz.com>
In-Reply-To: <20041219013308.A2655@bozz.floop>
Mime-version: 1.0
Content-type: text/plain; charset="US-ASCII"
Content-transfer-encoding: 7bit
Status: RO
Content-Length: 55
Lines: 6

So long, and thanks for all the spam!

Yours,

Foo Fie

Let’s try to find out who this e-mail is from. If you examine the text, I’m sure you can figure it out in this case (especially
if you look at the message itself, at the bottom, of course). But can you see a general pattern? How do you extract
the name of the sender, without the e-mail address? Or, how can you list all the e-mail addresses mentioned in the
headers? Let’s handle the first task first.

The line containing the sender begins with the string 'From: ' and ends with an e-mail address enclosed in angle
brackets (< and >). You want the text found between those. If you use the fileinput module, this ought to be an
easy task. A program solving the problem is shown in Listing 10-10.

■Note You could solve this problem without using regular expressions if you wanted. You could also use
the email module.

Listing 10-10. A Program for Finding the Sender of an E-mail

find_sender.py
import fileinput, re
pat = re.compile('From: (.*?) <.*>$')
for line in fileinput.input():
 m = pat.match(line)
 if m: print m.group(1)

You can then run the program like this (assuming that the e-mail message is in the text file message.eml):

246 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

$ python find_sender.py message.eml
Foo Fie

You should note the following about this program:

• I compile the regular expression to make the processing more efficient.

• I enclose the subpattern I want to extract in parentheses, making it a group.

• I use a nongreedy pattern to match the name because I want to stop matching when I reach the first left
angle bracket (or, rather, the space preceding it).

• I use a dollar sign to indicate that I want the pattern to match the entire line, all the way to the end.

• I use an if statement to make sure that I did in fact match something before I try to extract the match
of a specific group.

To list all the e-mail addresses mentioned in the headers, you need to construct a regular expression that matches
an e-mail address but nothing else. You can then use the method findall to find all the occurrences in each line.
To avoid duplicates, you keep the addresses in a set (described earlier in this chapter). Finally, you extract the keys,
sort them, and print them out:

import fileinput, re
pat = re.compile(r'[a-z\-\.]+@[a-z\-\.]+', re.IGNORECASE)
addresses = set()
for line in fileinput.input():
 for address in pat.findall(line):
 addresses.add(address)
for address in sorted(addresses):
 print address

The resulting output when running this program (with the preceding e-mail message as input) is as follows:

Mr.Gumby@bar.baz
foo@bar.baz
foo@baz.com
magnus@bozz.floop

Note that when sorting, uppercase letters come before lowercase letters.

■Note I haven’t adhered strictly to the problem specification here. The problem was to find the addresses
in the header, but in this case the program finds all the addresses in the entire file. To avoid that, you can
call fileinput.close() if you find an empty line because the header can’t contain empty lines, and you
would be finished. Alternatively, you can use fileinput.nextfile() to start processing the next file, if
there is more than one.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 247

Making a template system. A template is a file you can put specific values into to get a finished text of some kind.
For example, you may have a mail template requiring only the insertion of a recipient name. Python already has an
advanced template mechanism: string formatting. However, with regular expressions you can make the system
even more advanced. Let’s say you want to replace all occurrences of '[something]' (the “fields”) with the result
of evaluating something as an expression in Python. Thus, the string

'The sum of 7 and 9 is [7 + 9].'

should be translated to

'The sum of 7 and 9 is 16.'

Also, you want to be able to perform assignments in these fields, so that the string

'[name="Mr. Gumby"]Hello, [name]'

should be translated to

'Hello, Mr. Gumby'

This may sound like a complex task, but let’s review the available tools:

• You can use a regular expression to match the fields and extract their contents.

• You can evaluate the expression strings with eval, supplying the dictionary containing the scope. You
do this in a try/except statement; if a SyntaxError is raised, you probably have a statement (such
as an assignment) on your hands and should use exec instead.

• You can execute the assignment strings (and other statements) with exec, storing the template’s scope
in a dictionary.

• You can use re.sub to substitute the result of the evaluation into the string being processed.

Suddenly it doesn’t look so intimidating, does it?

■Tip If a task seems daunting, it almost always helps to break it down into smaller pieces. Also, take stock
of the tools at your disposal for ideas on how to solve your problem.

See Listing 10-11 for a sample implementation.

Listing 10-11. A Template System

templates.py

import fileinput, re

Matches fields enclosed in square brackets:
field_pat = re.compile(r'\[(.+?)\]')

248 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

We'll collect variables in this:
scope = {}

This is used in re.sub:
def replacement(match):
 code = match.group(1)
 try:
 # If the field can be evaluated, return it:
 return str(eval(code, scope))
 except SyntaxError:
 # Otherwise, execute the assignment in the same scope...
 exec code in scope
 # ...and return an empty string:
 return ''

Get all the text as a single string:
(There are other ways of doing this; see Chapter 11)
lines = []
for line in fileinput.input():
 lines.append(line)
text = ''.join(lines)

Substitute all the occurrences of the field pattern:
print field_pat.sub(replacement, text)

Simply put, this program does the following:

1. Defines a pattern for matching fields

2. Creates a dictionary to act as a scope for the template

3. Defines a replacement function that does the following:

a. Grabs group 1 from the match and puts it in code.

b. Tries to evaluate code with the scope dictionary as namespace, converts the result to a string, and
returns it. If this succeeds, the field was an expression and everything is fine. Otherwise (i.e., a
SyntaxError is raised), go to Step 3c.

c. Executes the field in the same namespace (the scope dictionary) used for evaluating expressions,
and then returns an empty string (because the assignment doesn’t evaluate to anything).

4. Uses fileinput to read in all available lines, puts them in a list, and joins them into one big string

5. Replaces all occurrences of field_pat using the replacement function in re.sub, and prints the result

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 249

■Note It is much more efficient to put the lines into a list and then join them at the end than to do something
like this:

Don't do this:
text = ''
for line in fileinput.input():
 text += line

Although this looks elegant, each assignment has to create a new string, which is the old string with the new
one appended. This leads to a terrible waste of resources and makes your program slow. Don’t do this. If you
want a more elegant way to read in all the text of a file, take a peek at Chapter 11.

So, I have just created a really powerful template system in only 15 lines of code (not counting whitespace and comments).
I hope you’re starting to see how powerful Python becomes when you use the standard libraries. Let’s finish this
example by testing the template system. Try running it on the simple file shown in Listing 10-12.

Listing 10-12. A Simple Template Example

[x = 2]
[y = 3]
The sum of [x] and [y] is [x + y].

You should see this:

The sum of 2 and 3 is 5.

■Note It may not be obvious, but there are three empty lines in the preceding output—two above and one
below the text. Although the first two fields have been replaced by empty strings, the newlines following them
are still there. Also, the print statement adds a newline, which accounts for the empty line at the end.

But wait, it gets better! Because I have used fileinput, I can process several files in turn. That means that I can
use one file to define values for some variables, and then another file as a template where these values are inserted.
For example, I might have one file with definitions as in Listing 10-13, named magnus.txt, and a template file as
in Listing 10-14, named template.txt.

250 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

Listing 10-13. Some Template Definitions

[name = 'Magnus Lie Hetland']
[email = 'magnus@foo.bar']
[language = 'python']

Listing 10-14. A Template

[import time]
Dear [name],

I would like to learn how to program. I hear you use
the [language] language a lot -- is it something I
should consider?

And, by the way, is [email] your correct email address?

Fooville, [time.asctime()]

Oscar Frozzbozz

The import time isn’t an assignment (which is the statement type I set out to handle), but because I’m not being
picky and just use a simple try/except statement, my program supports any statement or expression that works
with eval or exec. You can run the program like this (assuming a UNIX command line):

$ python templates.py magnus.txt template.txt

You should get some output similar to that in Listing 10-15.

Listing 10-15. Sample Output from the Template System

Dear Magnus Lie Hetland,

I would like to learn how to program. I hear you use
the python language a lot -- is it something I
should consider?

And, by the way, is magnus@foo.bar your correct email address?

Fooville, Wed Apr 24 20:34:29 2004

Oscar Frozzbozz

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 251

Even though this template system is capable of some quite powerful substitutions, it still has some flaws. For
example, it would be nice if you could write the definition file in a more flexible manner. If it were executed with
execfile, you could simply use normal Python syntax. That would also fix the problem of getting lots of blank lines
at the top of the output.

Can you think of other ways of improving it? Can you think of other uses for the concepts used in this program? The
best way (in my opinion) to become really proficient in any programming language is to play with it—test its limitations
and discover its strengths. See if you can rewrite this program so it works better and suits your needs.

■Note There is, in fact, a perfectly good template system available in the standard libraries, in the string
module. Just take a look at the Template class, for example.

Other Interesting Standard Modules
Even though this chapter has covered a lot of material, I have barely scratched the surface of
the standard libraries. To tempt you to dive in, I’ll quickly mention a few more cool libraries:

difflib. This library enables you to compute how similar two sequences are. It also enables
you to find the sequences (from a list of possibilities) that are “most similar” to an original
sequence you provide. difflib could be used to create a simple searching program, for
example.

md5 and sha. These modules can compute small “signatures” (numbers) from strings;
and if you compute the signatures for two different strings, you can be almost certain that
the two signatures will be different. You can use this on large text files. These modules have
several uses in cryptography and security.

csv. CSV is short for comma-separated values, a simple format used by many applications
(for example, many spreadsheets and database programs) to store tabular data. It is mainly
used when exchanging data between different programs. The csv module lets you read
and write CSV files easily, and it handles some of the more tricky parts of the format quite
transparently.

timeit, profile, and trace. The timeit module (with its accompanying command-line
script) is a tool for measuring the time a piece of code takes to run. It has some tricks up its
sleeve, and you probably ought to use it rather than the time module for performance
measurements. The profile module (along with its companion module, pstats) can be
used for a more comprehensive analysis of the efficiency of a piece of code. The trace
module (and program) can give you a coverage analysis (that is, which parts of your code
are executed and which are not). This can be useful when writing test code, for example.

datetime. If the time module isn’t enough for your time-tracking needs, it’s quite possible
that datetime will be. It has support for special date and time objects, and allows you to
construct and combine these in various ways. The interface is in many ways a bit more
intuitive than that of the time module.

252 C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D

itertools. Here you have lots of tools for creating and combining iterators (or other iterable
objects). There are functions for chaining iterables, for creating iterators that return consec-
utive integers forever (similar to range, but without an upper limit), to cycle through an iterable
repeatedly, and several other useful stuff.

logging. Simply using print statements to figure out what’s going on in your program can
be useful. If you want to keep track of things even without having lots of debugging output,
you might write this information to a log file. This module gives you a standard set of tools
for managing one or more central logs, with several levels of priority for your log messages,
among other things.

getopt and optparse. In UNIX, command-line programs are often run with various options
or switches. (The Python interpreter is a typical example.) These will all be found in sys.argv,
but handling these correctly yourself is far from easy. The getopt library is a tried and true
solution to this problem, while optparse is newer, more powerful, and much easier to use.

cmd. This module enables you to write a command-line interpreter, somewhat like the
Python interactive interpreter. You can define your own commands that the user can
execute at the prompt. Perhaps you could use this as the user interface to one of your
programs?

A Quick Summary
In this chapter, you’ve learned about modules: how to create them, how to explore them, and
how to use some of those included in the standard Python libraries.

Modules. A module is basically a subprogram whose main function is to define things,
such as functions, classes, and variables. If a module contains any test code, it should be
placed in an if statement that checks whether __name__=='__main__'. Modules can be
imported if they are in the PYTHONPATH. You import a module stored in the file foo.py with
the statement import foo.

Packages. A package is just a module that contains other modules. Packages are implemented
as directories that contain a file named __init__.py.

Exploring modules. After you have imported a module into the interactive interpreter, you
can explore it in many ways. Among them are using dir, examining the __all__ variable,
and using the help function. The documentation and the source code can also be excellent
sources of information and insight.

The standard library. Python comes with several modules included, collectively called the
standard library. Some of these were reviewed in this chapter:

• sys: A module that gives you access to several variables and functions that are tightly
linked with the Python interpreter.

• os: A module that gives you access to several variables and functions that are tightly
linked with the operating system.

• fileinput: A module that makes it easy to iterate over the lines of several files or streams.

C H A P T E R 1 0 ■ B A T T E R I E S I N C L U D E D 253

• sets, heapq, deque: Three modules giving you three useful data structures. Sets are also
available in the form of the built-in type set.

• time: A module for getting the current time, and for manipulating and formatting
times and dates.

• random: A module with functions for generating random numbers, choosing random
elements from a sequence, or shuffling the elements of a list.

• shelve: A module for creating a persistent mapping, which stores its contents in a
database with a given file name.

• re: A module with support for regular expressions.

If you are curious to find out more, I again urge you to browse the Python Library Reference
(http://python.org/doc/lib). It’s really interesting reading.

New Functions in This Chapter

What Now?
If you have grasped at least a few of the concepts in this chapter, your Python prowess has
probably taken a great leap forward. With the standard libraries at your fingertips, Python
changes from powerful to extremely powerful. With what you have learned so far, you can write
programs to tackle a wide range of problems. In the next chapter, you learn more about using
Python to interact with the outside world of files and networks, and thereby tackle problems of
greater scope.

Function Description

dir(obj) Returns an alphabetized list of attribute names

help([obj]) Provides interactive help or help about a specific object

reload(module) Returns a reloaded version of a module that has already been imported

255

■ ■ ■

C H A P T E R 1 1

Files and Stuff

So far we’ve mainly been working with data structures that reside in the interpreter itself.
What little interaction our programs have had with the outside world has been through input,
raw_input, and print. In this chapter, we go one step further and let our programs catch a
glimpse of a larger world: the world of files and streams. The functions and objects described
in this chapter will enable you to store data between program invocations and to process data
from other programs.

FILE-LIKE OBJECTS

You will probably run into the term “file-like” repeatedly in your Python career (I’ve used it a few times already).
A file-like object is simply one supporting a few of the same methods as a file, most notably either read or
write or both. The objects returned by urllib.urlopen (see Chapter 14) are a good example of this. They
support methods such as read, readline, and readlines, but not (at the time of writing) methods such as
fileno or isatty, for example.

Opening Files
You can open files with the open function, which has the following syntax:

open(name[, mode[, buffering]])

The open function takes a file name as its only mandatory argument, and returns a file
object. The mode and buffering arguments are both optional and will be explained in the
material that follows.

■Note In earlier versions of Python, open was a separate function, but from version 2.2 onwards, open is
the same as file, the file type. So when you call it as a function, you are actually using the file constructor
to create a file object.

256 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

So, assuming that you have a text file (created with your text editor, perhaps) called
somefile.txt stored in the directory C:\text (or something like ~/text in UNIX), you can
open it like this:

>>> f = open(r'C:\text\somefile.txt')

If the file doesn’t exist, you may see an exception traceback like this:

Traceback (most recent call last):
 File "<pyshell#0>", line 1, in ?
IOError: [Errno 2] No such file or directory: "C:\\text\\somefile.txt"

You’ll see what you can do with such file objects in a little while, but first, let’s take a look
at the other two arguments of the open function.

The Mode Argument
If you use open with only a file name as a parameter, you get a file object you can read from. If
you want to write to the file, you have to state that explicitly, supplying a mode. (Be patient—
I get to the actual reading and writing in a little while.) The mode argument to the open function
can have several values, as summarized in Table 11-1.

Explicitly specifying read mode has the same effect as not supplying a mode string at all.
The write mode enables you to write to the file.

The '+' can be added to any of the other modes to indicate that both reading and writing
is allowed. So, for example, 'r+' can be used when opening a text file for reading and writing.
(For this to be useful, you will probably want to use seek as well; see the sidebar “Random
Access” later in this chapter.)

The 'b' mode changes the way the file is handled. Generally, Python assumes that you are
dealing with text files (containing characters). Typically, this is not a problem. But if you are
processing some other kind of file (called a binary file) such as a sound clip or an image, you
should add a 'b' to your mode: for example, 'rb' to read a binary file.

Table 11-1. Possible Values for the Mode Argument of the open Function

Value Description

'r' Read mode

'w' Write mode

'a' Append mode

'b' Binary mode (added to other mode)

'+' Read/write mode (added to other mode)

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 257

WHY USE BINARY MODE?

If you use binary mode when you read (or write) a file, things won’t be much different. You are still able to read
a number of bytes (basically the same as characters), and perform other operations associated with text files.
The main point is that when you use binary mode, Python gives you exactly the contents found in the file—
and in text mode it won’t necessarily do that.

If you find it shocking that Python manipulates your text files, don’t worry. The only “trick” it employs is
to standardize your line endings. Generally, in Python, you end your lines with a newline character (\n), as is
the norm in UNIX systems. This is not standard in Windows, however. In Windows, a line ending is marked with
\r\n. To hide this from your program (so it can work seamlessly across different platforms), Python does
some automatic conversion here: When you read text from a file in text mode in Windows, it converts \r\n to
\n. Conversely, when you write text to a file in text mode in Windows, it converts \n to \r\n. (The Macintosh
version does the same thing, but converts between \n and \r.)

The problem occurs when you work with a binary file, such as a sound clip. It may contain bytes that can
be interpreted as the line-ending characters mentioned in the previous paragraph, and if you are using text
mode, Python performs its automatic conversion. However, that will probably destroy your binary data. So, to
avoid that, you simply use binary mode, and no conversions are made.

Note that this distinction is not important on platforms (such as UNIX) where the newline character is the
standard line terminator because no conversion is performed there anyway.

■Note Files can be opened in universal newline support mode, using the mode character U together with,
for example, r. In this mode, all line-ending characters/strings (\r\n, \r, or \n) are then converted to
newline characters (\n), regardless of which convention is followed on the current platform.

Buffering
The open function takes a third (optional) parameter, which controls the buffering of the file. If
the parameter is 0 (or False), I/O (input/output) is unbuffered (all reads and writes go directly
from/to the disk); if it is 1 (or True), I/O is buffered (meaning that Python may use memory
instead of disk space to make things go faster, and only update when you use flush or close—
see the section “Closing Your Files,” later in this chapter). Larger numbers indicate the buffer
size (in bytes), while 1 (or any negative number) sets the buffer size to the default.

The Basic File Methods
Now you know how to open files; the next step is to do something useful with them. In this
section, you learn about some basic methods that file objects (and some other “file-like”
objects, sometimes called streams) have.

258 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

THREE STANDARD STREAMS

In Chapter 10, in the section about the sys module, I mentioned three standard streams. These are actually
files (or “file-like” objects): you can apply most of what you learn about files to them.

A standard source of data input is sys.stdin. When a program reads from standard input, you can
either supply text by typing it, or you can link it with the standard output of another program, using a pipe. (This
is a standard UNIX concept—there is an example later in this section.)

The text you give to print appears in sys.stdout. The prompts for input and raw_input also go
there. Data written to sys.stdout typically appears on your screen, but can be linked to the standard input
of another program with a pipe, as mentioned.

Error messages (such as stack traces) are written to sys.stderr. In many ways it is similar to
sys.stdout.

Reading and Writing
The most important capabilities of files (or streams) are supplying and receiving data. If you
have a file-like object named f, you can write data (in the form of a string) with the method
f.write, and read data (also as a string) with the method f.read.

Each time you call f.write(string), the string you supply is written to the file after those
you have written previously:

>>> f = open('somefile.txt', 'w')
>>> f.write('Hello, ')
>>> f.write('World!')
>>> f.close()

Notice that I call the close method when I’m finished with the file. You learn more about
it in the section “Closing Your Files” later in this chapter.

Reading is just as simple. Just remember to tell the stream how many characters (bytes)
you want to read.

Example (continuing where I left off):

>>> f = open('somefile.txt', 'r')
>>> f.read(4)
'Hell'
>>> f.read()
'o, World!'

First, I specify how many characters to read (4), and then I simply read the rest of the file
(by not supplying a number). Note that I could have dropped the mode specification from the
call to open because 'r' is the default.

Example

In a UNIX shell (such as GNU bash), you can write several commands after one another, linked together with pipes,
as in this example (assuming GNU bash):

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 259

$ cat somefile.txt | python somescript.py | sort

■Note GNU bash is also available in Windows. For more information, take a look at http://www.cygwin.org.

This pipeline consists of three commands:

• cat somefile.txt simply writes the contents of the file somefile.txt to standard output
(sys.stdout).

• python somescript.py executes the Python script somescript. The script presumably
reads from its standard input and writes the result to standard output.

• sort reads all the text from standard input (sys.stdin), sorts the lines alphabetically, and
writes the result to standard output.

But what is the point of these pipe characters (|), and what does somescript.py do?

The pipes link up the standard output of one command with the standard input of the next. Clever, eh? So you can
safely guess that somescript.py reads data from its sys.stdin (which is what cat somefile.txt writes)
and writes some result to its sys.stdout (which is where sort gets its data).

A simple script (somescript.py) that uses sys.stdin is shown in Listing 11-1. The contents of the file
somefile.txt are shown in Listing 11-2.

$ cat somefile.txt | python somescript.py

Listing 11-1. Simple Script That Counts the Words in sys.stdin

somescript.py
import sys
text = sys.stdin.read()
words = text.split()
wordcount = len(words)
print 'Wordcount:', wordcount

Listing 11-2. A File Containing Some Nonsensical Text

Your mother was a hamster and your
father smelled of elderberries.

Here are the results of cat somefile.txt | python somescript.py:

Wordcount: 11

260 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

RANDOM ACCESS

In this chapter, I treat files only as streams—you can read data only from start to finish, strictly in order. In
fact, you can also move around a file, accessing only the parts you are interested in (called random access) by
using the two file-object methods seek and tell:

seek(offset[, whence]): This method moves the “current position” (where reading or writing is
performed) to the position described by offset and whence. offset is a byte (character) count. whence
defaults to 0, which means that the offset is from the beginning of the file (the offset must be nonnegative);
whence may also be set to 1 (move relative to current position: the offset may be negative), or 2 (move relative
to the end of the file).

Consider this example:

>>> f = open(r'c:\text\somefile.txt', 'w')
>>> f.write('01234567890123456789')
>>> f.seek(5)
>>> f.write('Hello, World!')
>>> f.close()
>>> f = open(r'c:\text\somefile.txt')
>>> f.read()
'01234Hello, World!89'

tell(): This method returns the current file position as in the following example:

>>> f = open(r'c:\text\somefile.txt')
>>> f.read(3)
'012'
>>> f.read(2)
'34'
>>> f.tell()
5L

Note that the number returned from f.tell in this case was a long integer. That may not always be the case.

Reading and Writing Lines
Actually, what I’ve been doing until now is a bit impractical. Usually, I could just as well be
reading in the lines of a stream as reading letter by letter. You can read a single line (text from
where you have come so far, up to and including the first line separator you encounter) with
the method file.readline. You can either use it without any arguments (in which case a line is
simply read and returned) or with a nonnegative integer, which is then the maximum number
of characters (or bytes) that readline is allowed to read. So if someFile.readline() returns
'Hello, World!\n', someFile.readline(5) returns 'Hello'. To read all the lines of a file and
have them returned as a list, use the readlines method.

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 261

■Note An alternative to readlines that can be useful when iterating is xreadlines. For more information,
see the section “Iterating Over File Contents,” later in this chapter.

The method writelines is the opposite of readlines: Give it a list (or, in fact, any sequence
or iterable object) of strings, and it writes all the strings to the file (or stream). Note that newlines
are not added: you have to add those yourself. Also, there is no writeline method because you
can just use write.

■Note On platforms that use other line separators, substitute “carriage return” (Mac) or “carriage return
and newline” (Windows) for “newline.”

Closing Your Files
You should remember to close your files by calling their close method. Usually, a file object is
closed automatically when you quit your program (and possibly before that), and not closing
files you have been reading from isn’t really that important (although it can’t hurt, and might
help to avoid keeping the file uselessly “locked” against modification in some operating systems
and settings). But you should always close a file you have written to because Python may buffer
(keep stored temporarily somewhere, for efficiency reasons) the data you have written, and if
your program crashes for some reason, the data might not be written to the file at all. The safe
thing is to close your files after you’re finished with them. If you want to be certain that your file
is closed, you should use a try/finally statement with the call to close in the finally clause:

Open your file here
try:
 # Write data to your file
finally:
 file.close()

■Tip After writing something to a file, you usually want the changes to appear in that file, so other programs
reading the same file can see the changes. Well, isn’t that what happens, you say. Not necessarily. As mentioned,
the data may be buffered (stored temporarily somewhere in memory), and not written until you close the file.
If you want to keep working with the file (and not close it) but still want to make sure the file on disk is updated
to reflect your changes, call the file object’s flush method. (Note, however, that flush might not allow other
programs running at the same time to access the file, due to locking considerations that depend on your operating
system and settings. Whenever you can conveniently close the file, that is preferable.)

262 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

Examples

Assume that somefile.txt contains the text in Listing 11-3. What can you do with it?

Listing 11-3. A Simple Text File

Welcome to this file
There is nothing here except
This stupid haiku

Let’s try the methods you know:

read(n):

>>> f = open(r'c:\text\somefile.txt')
>>> f.read(7)
'Welcome'
>>> f.read(4)
' to '
>>> f.close()

read():

>>> f = open(r'c:\text\somefile.txt')
>>> print f.read()
Welcome to this file
There is nothing here except
This stupid haiku
>>> f.close()

readline():

>>> f = open(r'c:\text\somefile.txt')
>>> for i in range(3):
 print str(i) + ': ' + f.readline(),
0: Welcome to this file
1: There is nothing here except
2: This stupid haiku
>>> f.close()

readlines():

>>> import pprint
>>> pprint.pprint(open(r'c:\text\somefile.txt').readlines())
['Welcome to this file\n',
'There is nothing here except\n',
'This stupid haiku']

Note that I relied on the file object being closed automatically in this example.

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 263

write(string):

>>> f = open(r'c:\text\somefile.txt', 'w')
>>> f.write('this\nis no\nhaiku')
>>> f.close()

After running this, the file contains the text in Listing 11-4.

Listing 11-4. The Modified Text File

this
is no
haiku

writelines(list):

>>> f = open(r'c:\text\somefile.txt')
>>> lines = f.readlines()
>>> f.close()
>>> lines[1] = "isn't a\n"
>>> f = open(r'c:\text\somefile.txt', 'w')
>>> f.writelines(lines)
>>> f.close()

After running this, the file contains the text in Listing 11-5.

Listing 11-5. The Text File, Modified Again

this
isn't a
haiku

Iterating Over File Contents
Now you’ve seen some of the methods file objects present to us, and you’ve learned how to
acquire such file objects. One of the common operations on files is to iterate over their contents,
repeatedly performing some action as you go. There are many ways of doing this, and although
you can find your favorite and stick to that, others may have done it differently, and to under-
stand their programs, you should know all the basic techniques. Some of these techniques are
just applications of the methods you’ve already seen (read, readline, and readlines), while
some are new in this chapter (for example, xreadlines and file iterators).

In all the examples in this section, I use a fictitious function called process to represent the
processing of each character or line. Feel free to implement it in any way you like. One simple
example would be the following:

def process(string):
 print 'Processing: ', string

264 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

More useful implementations could do such things as storing data in a data structure,
computing a sum, replacing patterns with the re module, or perhaps adding line numbers.

Also, to try out the examples, you should set the variable filename to the name of some
actual file.

Doing It Byte by Byte
One of the most basic (but probably least common) ways of iterating over file contents is to use
the read method in a while loop. For example, you might want to loop over every character
(byte) in the file. You could do that as shown in Listing 11-6.

Listing 11-6. Looping Over Characters with read

f = open(filename)
char = f.read(1)
while char:
 process(char)
 char = f.read(1)

This program works because when you have reached the end of the file, the read method
returns an empty string, but until then, the string always contains one character (and thus has
the Boolean value true). So as long as char is true, you know that you aren’t finished yet.

As you can see, I have repeated the assignment char = f.read(1), and code repetition is
generally considered a bad thing. (Laziness is a virtue, remember?) To avoid that, I can use the
while True/break technique you first encountered in Chapter 5. The resulting code is shown in
Listing 11-7.

Listing 11-7. Writing the Loop Differently

f = open(filename)
while True:
 char = f.read(1)
 if not char: break
 process(char)

As mentioned in Chapter 5, you shouldn’t use the break statement too often (because it
tends to make the code more difficult to follow); even so, the approach shown in Listing 11-7 is
usually preferred to that in Listing 11-6, precisely because you avoid duplicated code.

One Line at a Time
When dealing with text files, you are often interested in iterating over the lines in the file, not
each individual character. You can do this easily in the same way as we did with characters,
using the readline method (described earlier, in the section “Reading and Writing Lines”), as
shown in Listing 11-8.

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 265

Listing 11-8. Using readline in a while Loop

f = open(filename)
while True:
 line = f.readline()
 if not line: break
 process(line)

Reading Everything
If the file isn’t too large, you can just read the whole file in one go, using the read method with
no parameters (to read the entire file as a string), or the readlines method (to read the file into
a list of strings, in which each string is a line). Listings 11-9 and 11-10 show how easy it is to
iterate over characters and lines when you read the file like this. Note that reading the contents
of a file into a string or a list like this can be useful for other things besides iteration. For example,
you might apply a regular expression to the string, or you might store the list of lines in some
data structure for further use.

Listing 11-9. Iterating Over Characters with read

f = open(filename)
for char in f.read():
 process(char)

Listing 11-10. Iterating Over Lines with readlines

f = open(filename)
for line in f.readlines():
 process(line)

Lazy Line Iteration with fileinput and xreadlines
Sometimes you have to iterate over the lines in a very large file, and readlines would use too
much memory. You could use a while loop with readline, of course, but in Python for loops
are preferable when they are available. It just so happens that they are in this case. You can use
a method called lazy line iteration: lazy because it only reads the parts of the file actually needed
(more or less).

You have already encountered fileinput in Chapter 10; see Listing 11-11 for an example
using it. Note that the fileinput module takes care of opening the file. You just have to give it
a file name.

Listing 11-11. Iterating Over Lines with fileinput

import fileinput
for line in fileinput.input(filename):
 process(line)

You can also perform lazy line iteration by using the xreadlines method. It works almost
like readlines except that it doesn’t read all the lines into a list. Instead it creates an xreadlines

266 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

object. Note that xreadlines is somewhat “old-fashioned,” and you should instead use file iterators
(explained next) in your own code.

The New Kids on the Block: File Iterators
It’s time for the coolest technique of all. If Python had had this since the beginning, I suspect
that several of the other methods (at least xreadlines) would never have appeared. So what is
this cool technique? In recent versions of Python (from version 2.2), files are iterable, which
means that you can use them directly in for loops to iterate over their lines. See Listing 11-12
for an example. Pretty elegant, isn’t it?

Listing 11-12. Iterating Over a File

f = open(filename)
for line in f:
 process(line)

In these iteration examples, I’ve been pretty casual about closing my files. Although I probably
should have closed them, it’s not critical, as long as I don’t write to the file. If you are willing to
let Python take care of the closing (as I have done so far), you could simplify the example even
further, as shown in Listing 11-13. Here I don’t assign the opened file to a variable (like the
variable f I’ve used in the other examples), and therefore I have no way of explicitly closing it.

Listing 11-13. Iterating Over a File Without Storing the File Object in a Variable

for line in open(filename):
 process(line)

Note that sys.stdin is iterable, just like other files, so if you want to iterate over all the lines
in standard input, you can use

import sys
for line in sys.stdin:
 process(line)

Also, you can do all the things you can do with iterators in general, such as converting
them into lists of strings (by using list(open(filename))), which would simply be equivalent
to using readlines.

Consider the following example:

>>> f = open('somefile.txt', 'w')
>>> print >> f, 'This is the first line'
>>> print >> f, 'This is the second line'
>>> print >> f, 'This is the third line'
>>> f.close()
>>> first, second, third = open('somefile.txt')
>>> first
'This is the first line\n'
>>> second
'This is the second line\n'

C H A P T E R 1 1 ■ F I L E S A N D S T U F F 267

>>> third
'This is the third line\n'

■Note The syntax print >> file, text prints the text to the given file object.

In this example, it’s important to note the following:

• I’ve used print to write to the file; this automatically adds newlines after the strings
I supply.

• I use sequence unpacking on the opened file, putting each line in a separate variable.
(This isn’t exactly common practice because you usually won’t know the number of lines
in your file, but it demonstrates the “iteratorness” of the file object.)

• I close the file after having written to it, to ensure that the data is flushed to disk. (As you
can see, I haven’t closed it after reading from it. Sloppy, perhaps, but not critical.)

A Quick Summary
In this chapter, you’ve seen how to interact with the environment through files and file-like
objects, one of the most important techniques for I/O (input/output) in Python. Here are some
of the highlights from the chapter:

File-like objects. A file-like object is (informally) an object that supports a set of methods
such as read and readline (and possibly write and writelines).

Opening and closing files. You open a file with the open function (in newer versions of
Python, actually just an alias for file), by supplying a file name.

Modes and file types. When opening a file, you can also supply a mode, such as 'r' for read
mode or 'w' for write mode. By appending 'b' to your mode, you can open files as binary
files. (This is necessary only on platforms where Python performs line-ending conversion,
such as Windows.)

Standard streams. The three standard files (stdin, stdout, and stderr, found in the sys
module) are file-like objects that implement the UNIX standard I/O mechanism (also
available in Windows).

Reading and writing. You read from a file or file-like object using the method read. You
write with the method write.

Reading and writing lines. You can read lines from a file using readline, readlines, and
(for efficient iteration) xreadlines. You can write files with writelines.

Iterating over file contents. There are many ways of iterating over file contents. It is most
common to iterate over the lines of a text file, and you can do this by simply iterating over
the file itself. There are other methods too, such as readlines and xreadlines, that are
compatible with older versions of Python.

268 C H A P T E R 1 1 ■ F I L E S A N D S T U F F

New Functions in This Chapter

What Now?
So now you know how to interact with the environment through files; but what about interacting
with the user? So far we’ve used only input, raw_input, and print, and unless the user writes
something in a file that your program can read, you don’t really have any other tools for creating
user interfaces. That changes in the next chapter, when I cover graphical user interfaces, with
windows, buttons, and so on.

Function Description

file(name[, mode[, buffering]]) Opens a file and returns a file object

open(name[, mode[, buffering]]) Alias for file; use open rather than file when
opening files

269

■ ■ ■

C H A P T E R 1 2

Graphical User Interfaces

In this chapter, you learn how to make graphical user interfaces (GUIs) for your Python programs:
you know, windows with buttons and text fields and stuff like that. Pretty cool, huh?

There are plenty of so-called “GUI toolkits” available for Python, but none of them is
recognized as the standard GUI toolkit. This has its advantages (greater freedom of choice) and
drawbacks (others can’t use your programs unless they have the same GUI toolkit installed;
fortunately, there is no conflict between the various GUI toolkits available for Python, so you
can install as many different GUI toolkits as you want). This chapter focuses on one of the most
mature cross-platform GUI toolkits for Python, called wxPython.

An Example GUI Application
To make things easier to follow, I use a running example throughout this chapter. Your task is
to write a basic program that enables you to edit text files. Writing a full-fledged text editor is
beyond the scope of this chapter—we’ll stick to the essentials. After all, the goal is to demon-
strate the basic mechanisms of GUI programming in Python.

The requirements for this minimal text editor are as follows:

• It must allow you to open text files, given their file names.

• It must allow you to edit the text files.

• It must allow you to save the text files.

• It must allow you to quit.

When writing a GUI program, it’s often useful to draw a sketch of how you want it to look.
Figure 12-1 shows a simple layout that satisfies the requirements.

270 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

Figure 12-1. A sketch of the text editor

The elements of the interface can be used as follows:

1. Type a file name in the text field to the left of the buttons and click Open to open a file.
The text contained in the file is put in the text field at the bottom.

2. You can edit the text to your heart’s content in the large text field.

3. If and when you want to save your changes, click the Save button, which again uses the text
field containing the file name—and writes the contents of the large text field to the file.

4. There is no Quit button—if the user closes the window, the program quits.

In some languages, writing a program like this is a daunting task, but with Python and the
right GUI toolkit, it’s really a piece of cake. (You may not agree with me right now, but by the
end of this chapter I hope you will.)

A Plethora of Platforms
Before writing a GUI program in Python, you have to decide which GUI platform you want to
use. Simply put, a platform is one specific set of graphical components, accessible through a
given Python module, called a GUI toolkit. There are many such toolkits available for Python.
Some of the most popular ones are listed in Table 12-1. For an even more detailed list, you
could search the Vaults of Parnassus (see Appendix C) for the keyword “GUI.” Cameron Laird

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 271

also maintains a Web page with an extensive list of GUI toolkits for Python (http://phaseit.net/
claird/comp.lang.python/python_GUI.html).

Information about Tkinter and Jython with Swing can be found in the section “But I’d
Rather Use . . .” later in this chapter. For information about PythonWin, PyGTK, and PyQT,
check out the project home pages (see Appendix C).

As you can see, there are plenty of packages to choose from. So which toolkit should you
use? It is largely a matter of taste, although each toolkit has its advantages and drawbacks.
Tkinter is sort of a de facto standard because it has been used in most “official” Python GUI
programs, and it is included as a part of the Windows binary distribution. On UNIX, however,
you have to compile and install it yourself.

Another toolkit that is gaining in popularity is wxPython. This is a mature and feature-rich
toolkit, which also happens to be the favorite of Python’s creator, Guido van Rossum.

Downloading and Installing wxPython
To download wxPython, simply visit the download page, http://wxpython.org/download.php.
This page gives you detailed instructions about which version to download, as well as what
prerequisites the various versions have. If you’re running Windows, you probably want a prebuilt
binary. You can choose between one version with Unicode support and one without; unless
you know you need Unicode, it probably won’t make much of a difference which one you choose.
Make sure you choose the binary that corresponds to your version of Python. A version of
wxPython compiled for Python 2.3 won’t work with Python 2.4, for example.

For Mac OS X, you should again choose the wxPython version that agrees with your Python
version; you might also need to take the OS version into consideration. Again, you may need
to choose between a version with Unicode support and one without; just take your pick. The
download links and associated explanations should make it perfectly clear which version you need.

There are also RPM packages for various Linux distributions. If you’re running a Linux
distribution with RPM, you should at least download the wxPython common and runtime pack-
ages; you probably won’t need the devel package. Again, choose the version corresponding to
your Python version and Linux distribution.

Table 12-1. Some Popular GUI Toolkits Available for Python

Package Description

Tkinter Uses the Tk platform. Readily available. Semistandard.

wxPython Based on wxWindows. Increasingly popular.

PythonWin Windows only. Uses native Windows GUI capabilities.

Java Swing Jython only. Uses native Java GUI capabilities.

PyGTK Uses the GTK platform. Especially popular on Linux.

PyQt Uses the Qt platform. Especially popular on Linux.

272 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

■Note If you’re using a package system with automatic downloads, such as those found in Debian Linux
and Gentoo Linux, for example, you may very well be able to get wxPython directly through that system.

If none of the binaries fit your hardware or operating system (or Python version, for that
matter), you can always download the source distribution. Getting this to compile might require
downloading further source packages for various prerequisites, and is beyond the scope of this
chapter. There are fairly detailed explanations on the wxPython download page, though.

Once you’ve got wxPython itself, I would strongly suggest that you download the demo
distribution, which contains documentation, sample programs, and one very thorough (and
instructive) demo program. This demo program exercises most of the wxPython features, and
lets you see the source code for each portion in a very user-friendly manner—definitely worth
a look if you want to keep learning about wxPython on your own.

Installation should be fairly automatic and painless. To install Windows binaries, simply
run the downloaded executables (.exe files); in OS X, the downloaded file should appear as if it
were a CD-ROM that you can open, with a .pkg you can double-click; to install using RPM, consult
your RPM documentation (or take a look at the brief discussion in Chapter 1). Both the Windows
and OS X versions will start an install wizard, which ought to be simple to follow. Simply accept
all default settings and keep clicking “Continue” and finally “Finish.”

Getting Started
To see whether your installation works, you could try out the wxPython demo (which must be
installed separately). In Windows, It should be available in your Start menu; when installing it
in OS X, you could simply drag the wxPython Demo file to Applications, and then run it from
there later. Once you’ve finished playing with the demo (for now, anyway), you can get started
writing your own program, which is, of course, much more fun.

To get started, import the wx module:

import wx

There are several ways of writing wxPython programs, but one thing you can’t escape is
creating an application object. The basic application class is called wx.App, and it takes care of
all kinds of initialization behind the scenes. The simplest wxPython program would be some-
thing like this:

import wx
app = wx.App()
app.MainLoop()

■Note If you’re having trouble getting wx.App to work, you may want to try to replace it with wx.PySimpleApp.

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 273

Because there are no windows the user can interact with, the program exits immediately.

■Note As you can see from this example, the methods in the wx package are all capitalized, contrary to
common practice in Python. The reason for this is that the method names mirror method names from the
underlying C++ package, wxWidgets. Even though there is no formal rule against capitalized method or function
names, the norm is to reserve such names for classes.

Creating Windows and Components
Windows, also known as frames, are simply instances of the wx.Frame class. Widgets in the wx
framework are created with their parent as the first argument to their constructor. If you’re
creating an individual window, there will be no parent to consider, so simply use None, as
you see in Listing 12-1. Also, make sure you call the window’s Show method before you call
app.MainLoop—otherwise it will remain hidden. (You could also call win.Show in an event
handler; I discuss events a bit later.)

Listing 12-1. Creating and Showing a Frame

import wx
app = wx.App()
win = wx.Frame(None)
win.Show()
app.MainLoop()

If you run this program, you should see a single window appear, similar to that in
 Figure 12-2.

Figure 12-2. A GUI program with only one window

Adding a button to this frame is about as simple as it can be—simply instantiate wx.Button,
using win as the parent argument (see Listing 12-2).

274 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

Listing 12-2. Adding a Button to a Frame

import wx
app = wx.App()
win = wx.Frame(None)
btn = wx.Button(win)
win.Show()
app.MainLoop()

This will give you a window with a single button, as shown in Figure 12-3.

Figure 12-3. The program after adding a button

There are certainly a few rough corners still; the window has no title, the button has no
label, and you probably don’t want the button to cover the entire window in this way . . .

Labels and Positions
You can set the labels of widgets when you create them, by using the label argument of the
constructor. Similarly, you can set the title of frames by using the title argument. I find it most
practical to use keyword arguments with the wx constructors, so I don’t have to remember their
order. You can see an example of this in Listing 12-3.

Listing 12-3. Adding Labels and Titles with Keyword Arguments

import wx

app = wx.App()
win = wx.Frame(None, title="Simple Editor")

loadButton = wx.Button(win, label='Open')

saveButton = wx.Button(win, label='Save')

win.Show()

app.MainLoop()

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 275

The result of running the previous program should be something like what you see in
Figure 12-4.

Figure 12-4. A window with layout problems

As you can see, something isn’t quite right about this version of the program; one button
seems to be missing! Actually, it’s not missing—it’s just hiding. By placing the buttons more
carefully, you should be able to uncover the hidden button. A very basic (and not very practical)
method is to simply set positions and size by using the pos and size arguments to the constructors,
as in the code presented in Listing 12-4.

Listing 12-4. Setting Button Positions

import wx

app = wx.App()
win = wx.Frame(None, title="Simple Editor", size=(410, 335))
win.Show()

loadButton = wx.Button(win, label='Open',
 pos=(225, 5), size=(80, 25))

saveButton = wx.Button(win, label='Save',
 pos=(315, 5), size=(80, 25))

filename = wx.TextCtrl(win, pos=(5, 5), size=(210, 25))

contents = wx.TextCtrl(win, pos=(5, 35), size=(390, 260),
 style=wx.TE_MULTILINE | wx.HSCROLL)

app.MainLoop()

As you can see, both position and size are pairs of numbers. The position is a pair of x and
y coordinates, while the size consists of width and height.

There are another couple of new things in this piece of code: I’ve created a couple of text
controls (wx.TextCtrl objects), and given one of them a custom style. The default text control is
a text field, with a single line of editable text, and no scroll bar. In order to create a text area, you

276 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

can simply tweak the style with the style parameter. The style is actually a single integer, but
you don’t have to specify it directly. Instead, you use bitwise OR (the pipe) to combine various
style facets that are available under special names from the wx module. In this case, I’ve combined
wx.TE_MULTILINE, to get a multiline text area (which, by default, has a vertical scroll bar),
and wx.HSCROLL, to get a horizontal scroll bar. The result of running this program is shown in
Figure 12-5.

Figure 12-5. Properly positioned components

More Intelligent Layout
Although specifying the geometry of each component is easy to understand, it can be a bit
tedious. Doodling a bit on graph paper may help in getting the coordinates right, but there are
more serious drawbacks to this approach than having to play around with numbers. If you run
the program and try to resize the window, you’ll notice that the geometries of the components
don’t change. This is no disaster, but it does look a bit odd. When you resize a window, you
assume that its contents will be resized and relocated as well.

If you consider how I did the layout, this behavior shouldn’t really come as a surprise. I
explicitly set the position and size of each component, but didn’t say anything about how they
should behave when the window was resized. There are many ways of specifying this. One of
the easiest ways of doing layout in wx is using sizers, and the easiest one to use is wx.BoxSizer.

A sizer manages the size of contents; you simply add widgets to a sizer, together with a
few layout parameters, and then give this sizer the job of managing the layout of their parent
component. In our case, we’ll add a background component (a wx.Panel), create some nested
wx.BoxSizers and then set the sizer of the panel with its SetSizer method, as shown in Listing 12-5.

Listing 12-5. Using a Sizer

import wx

app = wx.App()
win = wx.Frame(None, title="Simple Editor", size=(410, 335))

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 277

bkg = wx.Panel(win)

loadButton = wx.Button(bkg, label='Open')
saveButton = wx.Button(bkg, label='Save')
filename = wx.TextCtrl(bkg)
contents = wx.TextCtrl(bkg, style=wx.TE_MULTILINE | wx.HSCROLL)

hbox = wx.BoxSizer()
hbox.Add(filename, proportion=1, flag=wx.EXPAND)
hbox.Add(loadButton, proportion=0, flag=wx.LEFT, border=5)
hbox.Add(saveButton, proportion=0, flag=wx.LEFT, border=5)

vbox = wx.BoxSizer(wx.VERTICAL)
vbox.Add(hbox, proportion=0, flag=wx.EXPAND | wx.ALL, border=5)
vbox.Add(contents, proportion=1,
 flag=wx.EXPAND | wx.LEFT | wx.LEFT | wx.LEFT, border=5)

bkg.SetSizer(vbox)
win.Show()

app.MainLoop()

This code gives the same result as the previous program, but instead of using lots of absolute
coordinates, I am now placing things in relation to one another.

The constructor of the wx.BoxSizer takes an argument determining whether it’s horizontal
or vertical (wx.HORIZONTAL or wx.VERTICAL), with horizontal being the default. The Add method
takes several arguments. The proportion argument sets the proportions according to which
space is allocated when the window is resized. For example, in the horizontal box sizer (the first
one), the filename widget gets all of the extra space when resizing. If each of the three had had
their proportion set to 1, each would have gotten an equal share. You can set the proportion to
any number.

The flag argument is similar to the style argument of the constructor; you construct it by
using bitwise OR between symbolic constants (integers that have special names). The wx.EXPAND
flag makes sure the component will expand into the allotted space. The wx.LEFT, wx.RIGHT,
wx.TOP, wx.BOTTOM, and wx.ALL flags determine on which sides the border argument applies,
and the border arguments gives the width of the border (spacing).

And that’s it. I’ve got the layout I wanted. One crucial thing is lacking, however. If you click
the buttons, nothing happens.

■Tip For more information on sizers, or anything else related to wxPython, check out the wxPython demo.
It has sample code for anything you might want to know about, and then some. If that seems daunting, check
out the wxPython Web site, http://wxpython.org.

278 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

Event Handling
In GUI lingo, the actions performed by the user (such as clicking a button) are called events.
You need to make your program notice these events somehow, and then react to them. You
accomplish this by binding a function to the widget where the event in question might occur.
When the event does occur (if ever), that function will then be called. You link the event
handler to a given event with a widget method called Bind.

Let’s assume that you have written a function responsible for opening a file, and you’ve
called it load. Then you can use that as an event handler for loadButton as follows:

loadButton.Bind(wx.EVT_BUTTON, load)

This is pretty intuitive, isn’t it? I’ve linked a function to the button—when the button is
clicked, the function is called. The symbolic constant wx.EVT_BUTTON signifies a button event.
The wx framework has such event constants for all kinds of events, from mouse motion to
keyboard presses and more.

WHAT’S THIS LOAD STUFF ABOUT?

There is nothing magical about my choice to use loadButton and load as the button and handler names—
even though the button text says “Open.” It’s just that if I had called the button openButton, open would
have been the natural name for the handler, and that would have made the built-in file-opening function open
unavailable. While there are ways of dealing with this, I found it easier to use a different name.

The Finished Program
Let’s fill in the remaining blanks. All you need now are the two event handlers, load and save.
When an event handler is called, it receives a single event object, which holds information
about what happened, but let’s ignore that here because you’re only interested in the fact that
a click occurred.

Even though the event handlers are the meat of the program, they are surprisingly simple.
Let’s take a look at the load function first. It looks like this:

def load(event):
 file = open(filename.GetValue())
 contents.SetValue(file.read())
 file.close()

The file opening/reading part ought to be familiar from Chapter 11. As you can see, the file
name is found by using filename’s GetValue method (where filename is the small text field,
remember?). Similarly, to put the text into the text area, you simply use contents.SetValue.

The save function is just as simple: It’s the exact same as load—except that it has a 'w' and
a write for the file-handling part, and GetValue for the text area:

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 279

def save(event):
 file = open(filename.GetValue(), 'w')
 file.write(contents.GetValue())
 file.close()

And that’s it. Now I simply bind these to their respective buttons, and the program is ready
to run. See Listing 12-6 for the final program.

Listing 12-6. The Final GUI Program

import wx
def load(event):
 file = open(filename.GetValue())
 contents.SetValue(file.read())
 file.close()

def save(event):
 file = open(filename.GetValue(), 'w')
 file.write(contents.GetValue())
 file.close()

app = wx.App()
win = wx.Frame(None, title="Simple Editor", size=(410, 335))

bkg = wx.Panel(win)

loadButton = wx.Button(bkg, label='Open')
loadButton.Bind(wx.EVT_BUTTON, load)

saveButton = wx.Button(bkg, label='Save')
saveButton.Bind(wx.EVT_BUTTON, save)

filename = wx.TextCtrl(bkg)
contents = wx.TextCtrl(bkg, style=wx.TE_MULTILINE | wx.HSCROLL)

hbox = wx.BoxSizer()
hbox.Add(filename, proportion=1, flag=wx.EXPAND)
hbox.Add(loadButton, proportion=0, flag=wx.LEFT, border=5)
hbox.Add(saveButton, proportion=0, flag=wx.LEFT, border=5)

vbox = wx.BoxSizer(wx.VERTICAL)
vbox.Add(hbox, proportion=0, flag=wx.EXPAND | wx.ALL, border=5)
vbox.Add(contents, proportion=1,
 flag=wx.EXPAND | wx.LEFT | wx.BOTTOM | wx.RIGHT, border=5)

bkg.SetSizer(vbox)
win.Show()

app.MainLoop()

280 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

You can try out the editor using the following steps:

1. Run the program. You should get a window like the one in the previous runs.

2. Type something in the large text area (for example, “Hello, world!”).

3. Type a file name in the small text field (for example, hello.txt). Make sure that this file
does not already exist or it will be overwritten.

4. Click the Save button.

5. Close the editor window (just for fun).

6. Restart the program.

7. Type the same file name in the little text field.

8. Click the Open button. The text of the file should reappear in the large text area.

9. Edit the file to your heart’s content, and save it again.

Now you can keep opening, editing, and saving until you grow tired of that—then you can
start thinking of improvements. (How about allowing your program to download files with
urllib, for example?)

HEY! WHAT ABOUT PYW?

In Chapter 1, I asked you to give your file the .pyw ending and double-click it (in Windows). Nothing happened,
and I promised to explain it later. In Chapter 10, I mentioned it again, and said I’d explain it in this chapter. So
I will.

It’s no big deal, really. It’s just that when you double-click an ordinary Python script in Windows, a DOS
window appears with a Python prompt in it. That’s fine if you use print and raw_input as the basis of your
interface, but now that you know how to make graphical user interfaces, this DOS window will only be in your
way. The truth behind the .pyw window is that it will run Python without the DOS window—which is just
perfect for GUI programs.

But I’d Rather Use . . .
There are so many GUI toolkits for Python that I can’t possibly show you how to use all of them;
I will, however, give you some examples from a couple of the more popular ones (Tkinter and
Jython/Swing).

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 281

Example

To illustrate the various packages, I’ve created a simple example—simpler, even, than the editor example used
earlier in the chapter. It’s just a single window containing a single button with the label “Hello” filling the window.
When you click the button, it prints out the words “Hello, world!” A simple wxPython version is shown in Listing 12-7.

Listing 12-7. A Simple GUI Example

import wx

def hello(event):
 print "Hello, world!"

app = wx.App()

win = wx.Frame(None, title="Hello, wxPython!",
 size=(200, 100))
button = wx.Button(win, label="Hello")
button.Bind(wx.EVT_BUTTON, hello)

win.Show()
app.MainLoop()

In the interest of simplicity, I’m not using any fancy layout features here. The resulting window is shown in
Figure 12-6.

Figure 12-6. A simple GUI example

Using Tkinter
Tkinter is an old-timer in the Python GUI business. It is a wrapper around the Tk GUI toolkit
(associated with the programming language Tcl). It is included by default in the Windows
distribution. The following URLs may be useful:

• http://www.ibm.com/developerworks/linux/library/l-tkprg

• http://www.nmt.edu/tcc/help/lang/python/tkinter.pdf

282 C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S

Example

Here is the GUI example implemented with Tkinter:

from Tkinter import *
def hello(): print 'Hello, world'
win = Tk() # Tkinter's 'main window'
win.title('Hello, Tkinter! ')
win.geometry('200x100') # Size 200, 200

btn = Button(win, text='Hello ', command=hello)
btn.pack(expand=YES, fill=BOTH)

mainloop()

Using Jython and Swing
If you’re using Jython (the Java implementation of Python), packages such as wxPython and
Tkinter aren’t available. The only GUI toolkits that are readily available are the Java standard
library packages AWT and Swing (Swing is the most recent and considered the standard Java
GUI toolkit). The good news is that both of these are automatically available so you don’t have
to install them separately. For more information, visit the Jython Web site and look into the
Swing documentation written for Java:

• http://www.jython.org

• http://java.sun.com/docs/books/tutorial/uiswing

Example

Here is the GUI example implemented with Jython and Swing:

from javax.swing import *
import sys

def hello(event): print 'Hello, world! '
btn = JButton('Hello')
btn.actionPerformed = hello

win = JFrame('Hello, Swing!')
win.contentPane.add(btn)

def closeHandler(event): sys.exit()
win.windowClosing = closeHandler

C H A P T E R 1 2 ■ G R A P H I C A L U S E R I N T E R F A C E S 283

btn.size = win.size = 200, 100
win.show()

Note that one additional event handler has been added here (closeHandler) because the Close button doesn’t
have any useful default behavior in Java Swing. Also note that you don’t have to explicitly enter the main event loop
because it’s running in parallel with the program (in a separate thread).

Using Something Else
The basics of most GUI toolkits are the same; unfortunately, however, when learning how to
use a new package, it takes time to find your way through all the details that enable you to do
exactly what you want. So you should take your time before deciding which package you want
to work with (the section “A Plethora of Platforms” earlier in this chapter should give you some
idea of where to start), and then immerse yourself in its documentation and start writing code.
I hope this chapter has provided the basic concepts you need to make sense of that documentation.

A Quick Summary
Once again, let’s review what we’ve covered in this chapter:

Graphical user interfaces. Graphical user interfaces are useful in making your programs
more user-friendly. Not all programs need them, but whenever your program interacts
with a user, a GUI is probably helpful.

GUI platforms for Python. Many GUI platforms are available to the Python programmer.
Although this richness is definitely a boon, the choice can sometimes be difficult.

wxPython. wxPython is a mature and feature-rich cross-platform GUI toolkit for Python.

Layout. You can position components quite simply by specifying their geometry directly.
However, to make them behave properly when their containing window is resized, you will
have to use some sort of layout manager. One common layout mechanism in wxPython
is sizers.

Event handling. Actions performed by the user trigger events in the GUI toolkit. To be of
any use, your program will probably be set up to react to some of these events; otherwise
the user won’t be able to interact with it. In wxPython, event handlers are added to compo-
nents with the Bind method.

What Now?
That’s it. You now know how to write programs that can interact with the outside world
through files and GUIs. In the next chapter you learn about another important component
of many program systems: Databases.

285

■ ■ ■

C H A P T E R 1 3

Database Support

Using simple, plain text files can only get you so far. Yes they can get you very far, but at some
point you may need some extra functionality. You may want some automated serialization,
and you can turn to pickle and shelve (see Chapter 10). But you may want features that go
beyond even this. For example, you might want to have automated support for concurrent
access to your data; that is, you want to allow several users to read from and write to your disk-
based data without causing any corrupted files or the like. Or you may want to be able to perform
complex searches using many data fields or properties at the same time, rather than the simple
single-key lookup of shelve. There are plenty of solutions to choose from, but if you want this
to scale to large amounts of data, and you want the solution to be easily understandable by
other programmers, choosing a relatively standard form of database is probably a good idea.

This chapter discusses the Python Database API, a standardized way of connecting to SQL
databases, and demonstrates how to execute some basic SQL using this API. The last section
also discusses some alternative database technology.

I won’t be giving you a tutorial on relational databases or the SQL language. The documen-
tation for most databases (such as PostgreSQL or MySQL, or, the one used in this chapter, SQLite)
should cover what you need to know. If you haven’t used relational databases before, you might
want to check out http://www.sqlcourse.com (or just do a Web search on the subject) or The
Programmer’s Guide to SQL by Cristian Darie and Karli Watson (Apress, 2003).

The simple database used throughout this chapter (SQLite, discussed in more detail later)
is, of course, not the only choice—by far. There are several popular commercial choices (such
as Oracle or Microsoft Access) as well as some solid and widespread open source databases
(such as MySQL, PostgreSQL and Firebird). Chapter 26 uses PostgreSQL and has some instruc-
tions for MySQL. For a list of some other databases supported by Python packages, check out
http://www.python.org/topics/database/modules.html, or visit the database category of Vaults of
Parnassus (http://www.vex.net/parnassus).

Relational (SQL) databases aren’t the only kind around, of course. There are object data-
bases such as ZODB (http://www.zope.org/Wikis/ZODB), compact table-based ones such as
Metakit (http://www.equi4.com/metakit/python.html), or even DB-style databases, such as
BSD DB (http://docs.python.org/lib/module-bsddb.html).

The Python DB API
There are lots and lots of SQL databases available out there, and many of them have corresponding
client modules in Python (some databases even have several). Most of the basic functionality

286 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

of all the databases is the same, so a program written to use one of them might easily—in
theory—be used with another. The problem with switching between different modules that
provide the same functionality (more or less) is usually that their interfaces (APIs) are different.
In order to solve this problem for database modules in Python, a standard database API has
been agreed upon. The current version of the API (2.0) is defined in PEP 249, Python Database
API Specification v2.0 (available from http://python.org/peps/pep-0249.html).

This section gives you an overview of the basics. I won’t cover the optional parts of the API,
because they don’t apply to all databases. You can find more information in the PEP mentioned,
or in the official Python Database Topic Guide (available from http://python.org/topics/
database). If you’re not really interested in all the API details, you can skip ahead to “Getting
Started,” later in this chapter.

Global Variables
Any compliant (that is, compliant with the DB API, version 2.0) database module must have
three global variables, which describe the peculiarities of the module. The reason for this is that
the API is designed to be very flexible, and to work with several different underlying mechanisms
without too much wrapping. If you want your program to work with several different databases,
this can be a nuisance, because you have to cover many different possibilities. A more realistic
course of action, in many cases, would be to simply check these variables to see that a given
database module is acceptable to your program. If it isn’t, you could simply exit with an appro-
priate error message, for example, or raise some exception. The global variables are
summarized in Table 13-1.

The API level (apilevel) is simply a string constant, giving the API version in use. According
to the DB API version 2.0, it may either have the value '1.0' or the value '2.0'. If the variable
isn’t there, the module is not 2.0-compliant, and you should (according to the API) assume that
the DB API version 1.0 is in effect. It also probably wouldn’t hurt to write your code to allow
other values here; who knows when, say, version 3.0 of the DB API will come out . . .

The thread safety level (threadsafety) is an integer ranging from 0 to 3, inclusive. 0 means
that threads may not share the module at all, and 3 means that the module is completely
thread-safe. A value of 1 means that threads may share the module itself, but not connections
(see “Connections and Cursors,” later), and 2 means that threads may share modules and
connections, but not cursors. If you don’t use threads (which, most of the time, you probably
won’t), you don’t have to worry about this variable at all.

The parameter style (paramstyle) indicates how parameters are spliced into SQL queries
when you make the database perform multiple similar queries (more on that later). The value
'format' indicates standard string formatting (in the C tradition, as used in Python), so you

Table 13-1. The Module Properties of the Python DB API

Variable Name Use

apilevel The version of the Python DB API in use

threadsafety How thread-safe the module is

paramstyle Which parameter style is used in the SQL queries

C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T 287

insert %s where you want to splice in parameters, for example. The value 'pyformat' indicates
extended format codes, as used with dictionary splicing, such as %(foo)s. In addition to these
Pythonic styles, there are three ways of writing the splicing fields: 'qmark' means that question
marks are used, 'numeric' means fields of the form :1 or :2 (where the numbers are the numbers
of the parameters), and 'named' means fields like :foobar, where foobar is a parameter name.

Exceptions
The API defines several exceptions, to make fine-grained error handling possible. However,
they’re defined in a hierarchy, so you can also catch several types of exceptions with a single
except block. (Of course, if you expect everything to work nicely, and you don’t mind having
your program shut down in the unlikely event of something going wrong, you can just ignore
the exceptions altogether.)

The exception hierarchy is shown in Table 13-2. The exceptions should be available
globally in the given database module. For more in-depth descriptions of these exceptions,
please see the API specification (the PEP mentioned previously).

Connections and Cursors
In order to use the underlying database system, you must first connect to it. For this you use the
aptly named function connect. It takes several parameters; exactly which depends on the data-
base. The API defines the parameters in Table 13-3 as a guideline. It recommends that they be
usable as keyword arguments, and that they follow the order given in the table. The arguments
should all be strings.

Table 13-2. Exceptions Specified in the DB-API

Exception Superclass Description

StandardError Generic superclass of all exceptions

Warning StandardError Raised if a nonfatal problem occurs

Error StandardError Generic superclass of all error conditions

InterfaceError Error Errors relating to the interface, not the database

DatabaseError Error Superclass for errors relating to the database

DataError DatabaseError Problems related to the data; e.g., values out
of range

OperationalError DatabaseError Errors internal to the operation of the database

IntegrityError DatabaseError Relational integrity compromised; e.g., key
check fails

InternalError DatabaseError Internal errors in the database; e.g., invalid cursor

ProgrammingError DatabaseError User programming error; e.g., table not found

NotSupportedError DatabaseError An unsupported feature (e.g., rollback) requested

288 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

You’ll see specific examples of using the connect function in the section “Getting Started”
later in this chapter, as well as in Chapter 26.

The connect function returns a connection object. This represents your current session
with the database. They support the methods shown in Table 13-4.

The rollback function may not be available, because not all databases support transac-
tions. (Transactions are just sequences of actions.) If it exists, it will “undo” any transactions
that have not been committed. The commit function is always available, but if the database
doesn’t support transactions, it doesn’t actually do anything. If you close a connection and
there are still transactions that have not been committed, they will implicitly be rolled back—
but only if the database supports rollbacks! So if you don’t want to rely on this, you should
always commit before you close your connection. If you commit, you probably don’t have to
worry too much about closing your connection; it’s automatically closed when it’s garbage
collected. If you want to be on the safe side, though, a call to close won’t cost you that many
keystrokes . . .

The cursor function leads us to another topic: cursor objects. You use cursors to execute
SQL queries and to examine the results. Cursors support more methods than connections, and
probably will be quite a bit more prominent in your programs. Table 13-5 gives an overview of
the cursor methods, and Table 13-6 gives an overview of the attributes.

Table 13-3. Common Parameters of the connect Function

Parameter Name Description Optional?

dsn Data source name. Specific meaning
database dependent.

No

user User name. Yes

password User password. Yes

host Host name. Yes

database Database name. Yes

Table 13-4. Connection Object Methods

Method Name Description

close() Close the connection. Connection object and its cursors are now unusable.

commit() Commit pending transactions, if supported. Otherwise do nothing.

rollback() Roll back pending transactions. (May not be available.)

cursor() Return a cursor object for the connection.

C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T 289

Some of these methods will be explained in more detail in the upcoming text, while some
(such as setinputsizes and setoutputsizes) will not be discussed. Please consult the PEP for
more details.

Types
In order to interoperate properly with the underlying SQL databases, which may place various
requirements on the values inserted into columns of certain types, the DB API defines certain
constructors and constants (singletons) used for special types and values. For example, if you
want to add a date to a database, it should be constructed with (for example) the Date constructor
of the corresponding database connectivity module. That allows the connectivity module to
perform any necessary transformations behind the scenes. Each module is required to imple-
ment the constructors and special values shown in Table 13-7.

Table 13-5. Cursor Object Methods

Name Description

callproc(name[, params]) Call a named database procedure with given name and
params (optional).

close() Close the cursor. Cursor is now unusable.

execute(oper[, params]) Execute an SQL operation, possibly with parameters.

executemany(oper, pseq) Execute an SQL operation for each param set in a sequence.

fetchone() Fetch the next row of a query result set as a sequence, or None.

fetchmany([size]) Fetch several rows of a query result set. Default size is arraysize.

fetchall() Fetch all (remaining) rows as a sequence of sequences.

nextset() Skip to the next available result set (optional).

setinputsizes(sizes) Used to predefine memory areas for parameters.

setoutputsize(size[, col]) Set a buffer size for fetching big data values.

Table 13-6. Cursor Object Attributes

Name Description

description Sequence of result column descriptions. Read-only.

rowcount The number of rows in the result. Read-only.

arraysize How many rows to return in fetchmany. Default is 1.

290 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

Downloading and Installing pysqlite
As mentioned previously, there are many SQL database engines available, with corresponding
Python modules. Most of these database engines are meant to be run as server programs, and
require administrator privileges even to install them. In order to lower the threshold for playing
around with the Python DB API, I’ve chosen to use a tiny database engine called SQLite, which
doesn’t have to be run as a standalone server, and which can work directly on local files, instead
of with some centralized database storage mechanism.

You can download pysqlite from the official Web page, http://pysqlite.org. For Linux
systems with package manager systems, chances are you can get pysqlite and SQLite directly
from the package manager. The Windows binaries for pysqlite actually include the database
engine itself (that is, SQLite), so all you have to do is to download the pysqlite installer corre-
sponding to your Python version, run it, and you’re all set.

If you’re not using Windows, and your operating system does not have a package manager
where you can find pysqlite and SQLite, you have to get the source packages for pysqlite and
SQLite and compile them yourself.

You can get the sources for SQLite from the SQLite Web page, http://sqlite.org. (Make
sure you get one of the source packages where automatic code generation has already been
performed.) Compiling SQLite is basically a matter of following the instructions in the included
README file. When subsequently compiling pysqlite, you need to make sure that the compila-
tion process can access the SQLite libraries and include files. If you’ve installed SQLite in some
standard location, it may well be that the setup script in the SQLite distribution can find it on
its own. In that case, you simply need to execute the following commands:

Table 13-7. DB API Constructors and Special Values

Name Description

Date(year, month, day) Creates an object holding a date value

Time(hour, minute, second) Creates an object holding a time value

Timestamp(y, mon, d, h, min, s) Creates an object holding a timestamp value

DateFromTicks(ticks) Creates an object holding a date value from ticks
since epoch

TimeFromTicks(ticks) Creates an object holding a time value from ticks

TimestampFromTicks(ticks) Creates an object holding a timestamp value from ticks

Binary(string) Creates an object holding a binary string value

STRING Describes string-based column types (such as CHAR)

BINARY Describes binary columns (such as LONG or RAW)

NUMBER Describes numeric columns

DATETIME Describes date/time columns

ROWID Describes row ID columns

C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T 291

python setup.py build
python setup.py install

You could simply use the latter command, which will perform the build automatically.
If this gives you heaps of error messages, chances are the installation script didn’t find the
required files. Make sure you know where the include files and libraries are installed, and
supply them explicitly to the install script. Let’s say I compiled SQLite in place in a directory
called /home/mlh/sqlite/current; then the header files could be found in /home/mlh/sqlite/
current/src and the library in /home/mlh/sqlite/current/build/lib. In order to let the instal-
lation process use these paths, edit the setup script, setup.py. In this file you’ll want to set the
variables include_dirs and library_dirs:

include_dirs = ['/home/mlh/sqlite/current/src']
library_dirs = ['/home/mlh/sqlite/current/build/lib']

After rebinding these variables, the install procedure described earlier should work
without errors.

Getting Started
Once you’ve got pysqlite installed, you can import it as a module, under the name sqlite. You
can then create a connection directly to a database file—which will be created if it does not
exist—by supplying a file name (which can be a relative or absolute path to the file):

>>> import sqlite
>>> conn = sqlite.connect('somedatabase.db')

You can then get a cursor from this connection:

>>> curs = conn.cursor()

This cursor can then be used to execute SQL queries. Once you’re done, if you’ve made any
changes, make sure you commit them, so they’re actually saved to the file:

>>> conn.commit()

You can (and should) commit each time you’ve modified the database, not just when
you’re ready to close it. When you are ready to close it, just use the close method:

>>> conn.close()

An Example Database Application
As an example program, I’ll construct a little nutrient database, based on data from the USDA
Nutrient Data Laboratory (http://www.nal.usda.gov/fnic/foodcomp). On their Web page, under
Food Composition Products, follow the link to the USDA National Nutrient Database for Standard
Reference. There you should find lots of different data files in plain text (ASCII) format, just the
way we like it. Follow the “Download” link, and download the zip file referenced by the ASCII

292 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

link under the heading “Abbreviated.” You should now get a zip file containing a text file named
ABBREV.txt, along with a PDF file describing its contents.1 If you have trouble finding this particular
file, any old data will do, of course. Just modify the source code to suit.

The data in the ABBREV.txt file has one data record per line, with the fields separated by
caret (^) characters. The numeric fields contain numbers directly, while the textual fields have
their string values “quoted” with a tilde (~) on each side. Here is a sample line, with parts deleted
for brevity:

~07276~^~HORMEL SPAM ... PORK W/ HAM MINCED CND~^ ... ^~1 serving~^^~~^0

Parsing such a line into individual fields is a simple as using line.split('^'). If a field
starts with a tilde, you know it’s a string and can use field.strip('~') to get its contents. For
the other (numeric) fields, float(field) should do the trick, except, of course, when the field is
empty. The program developed in the following sections will transfer the data in this ASCII file
into your SQL database, and let you perform some (semi-)interesting queries on them.

■Note This example program is intentionally simple. For a slightly more advanced example of database use
in Python, see Chapter 26.

Creating and Populating Tables
To actually create the tables of the database, and to populate them, writing a completely separate
one-shot program is probably the easiest solution. You can run this program once, and then
forget about both it and the original data source (the ABBREV.txt file), although keeping them
around is probably a good idea.

The program shown in Listing 13-1 creates a table called food with some appropriate fields,
reads the file ABBREV.txt, parses it (by splitting the lines and converting the individual fields using
a utility function, convert), and inserts values read from the text field into the database using
an SQL INSERT statement in a call to curs.execute.

■Note It would have been possible to use curs.executemany, supplying a list of all the rows extracted
from the data file. This would have given a minor speedup in this case, but might have given a more substantial
speedup if a networked client-server SQL system were used.

1. At the time of writing, you can get this file from the URL http://www.nal.usda.gov/fnic/foodcomp/
Data/SR17/dnload/sr17abbr.zip.

C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T 293

Listing 13-1. Importing Data into the Database (importdata.py)

import sqlite

def convert(value):
 if value.startswith('~'):
 return value.strip('~')
 if not value:
 value = '0'
 return float(value)

conn = sqlite.connect('food.db')
curs = conn.cursor()

curs.execute('''
CREATE TABLE food (
 id TEXT PRIMARY KEY,
 desc TEXT,
 water FLOAT,
 kcal FLOAT,
 protein FLOAT,
 fat FLOAT,
 ash FLOAT,
 carbs FLOAT,
 fiber FLOAT,
 sugar FLOAT
)
''')

field_count = 10
markers = ', '.join(['%s']*field_count)
query = 'INSERT INTO food VALUES (%s)' % markers

for line in open('ABBREV.txt'):
 fields = line.split('^')
 vals = [convert(f) for f in fields[:field_count]]
 curs.execute(query, vals)

conn.commit()
conn.close()

When you run this program (with ABBREV.txt in the same directory), it will create a new file
called food.db, containing all the data of the database.

I’d really like to encourage you to play around with this example, using other inputs,
adding print statements, and the like.

294 C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T

Searching and Dealing with Results
Using the database is really simple. Again, you create a connection and get a cursor from that
connection. Execute the SQL query with the execute method and extract the results with, for
example, the fetchall method. Listing 13-2 shows a tiny program that takes an SQL SELECT
condition as a command-line argument and prints out the returned rows in a record format.
You could try it out with a command line like the following:

$ python food_query.py "kcal <= 100 AND fiber >= 10 ORDER BY sugar"

You may notice a problem when you run this. The first row, raw orange peel, seems to have
no sugar at all. That’s because the field is missing in the data file. You could improve the import
script to detect this condition, and insert None instead of a real value, to indicate missing data.
Then you could use a condition such as "kcal <= 100 AND fiber >= 10 AND sugar ORDER BY
sugar", requiring the sugar field to have real data in any returned rows. As it happens, this strategy
will work with the current database, as well, where this condition will discard rows where the
sugar level is zero.

■Caution You might want to try a condition that searches for a specific food item, using an ID, such as
08323 for Cocoa Pebbles. The problem is that SQLite handles its values in a rather nonstandard fashion. Inter-
nally, all values are, in fact, strings, and some conversion and checking goes on between the database and
the Python API. Usually, this works just fine, but this is an example of where you might run into trouble. If you
supply the value 08323, it will be interpreted as the number 8323, and subsequently converted into the string
"8323"—an ID that doesn’t exist. One might have expected an error message here, rather than this surprising
and rather unhelpful behavior, but if you are careful, and use the string "08323" in the first place, you’ll be fine.

Listing 13-2. Food Database Query Program (food_query.py)

import sqlite, sys

conn = sqlite.connect('food.db')
curs = conn.cursor()

query = 'SELECT * FROM food WHERE %s' % sys.argv[1]
print query
curs.execute(query)
names = [f[0] for f in curs.description]
for row in curs.fetchall():
 for pair in zip(names, row):
 print '%s: %s' % pair
 print

C H A P T E R 1 3 ■ D A T A B A S E S U P P O R T 295

A Quick Summary
This chapter has given a rather brief introduction to making Python programs interact with
relational databases. It’s brief because, if you master Python and SQL, the coupling between
the two, in the form of the Python DB API, is quite easy to master. Here are some of the concepts
covered in this chapter:

The Python DB API. A simple, standardized interface that database wrapper modules
should conform to, to make it easier to write programs that will work with several different
databases.

Connections. A connection object represents the communication link with the SQL data-
base. From it, you can get individual cursors, using the cursor method. You also use the
connection object to commit or roll back transactions. After you’re done with the database,
the connection can be closed.

Cursors. A cursor is used to execute queries and to examine the results. Resulting rows can
be retrieved one by one, or many (or all) at once.

Types and Special Values. The DB API specifies the names of a set of constructors and
special values. The constructors deal with date and time objects, as well as binary data
objects. The special values represent the types of the relational database, such as STRING,
NUMBER, and DATETIME.

SQLite. A small, embedded SQL database, whose Python wrapper is called pysqlite. It’s
fast and simple to use, and does not require a separate server to be set up.

New Functions in This Chapter

What Now?
Persistence and database handling is an important part of many, if not most, big program
systems. Another component shared by a great number of such systems is dealt with in the
next chapter . . .

Function Description

connect(...) Connect to a database and return a connection objecta

a. The parameters to the connect function are database dependent.

297

■ ■ ■

C H A P T E R 1 4

Network Programming

In this chapter, I give you a sample of the various ways in which Python can help you write
programs that use a network such as the Internet as an important component. Python is a very
powerful tool for network programming, for many reasons. First, there are many preexisting
libraries for common network protocols and for various layers of abstractions on top of them,
so you can concentrate on the logic of your program, rather than on shuffling bits across wires.
Second, it’s easy to write code for handling various protocol formats that may not have existing
code, because Python’s really good at tackling various patterns in byte streams (you’ve already
seen this in dealing with text files in various ways).

Because Python has such an abundance of network tools available for you to use, I can
only give you a brief peek at its networking capabilities here. You can find some other examples
elsewhere in this book: I discuss the urllib module in Chapter 10, you get a discussion of Web-
oriented network programming in Chapter 15, and several of the projects use various networking
modules to get the job done. If you want to know even more about network programming in
Python, I can heartily recommend John Goerzen’s Foundations of Python Network Programming
(Apress, 2004), which deals with the subject very thoroughly.

In the following sections, I give you an overview of some of the networking modules avail-
able in the Python standard library. Then comes a discussion of the SocketServer class and its
friends, followed by a brief look at the various ways in which you can handle several connections at
once. Finally, I give you a look at the Twisted framework, a rich and mature framework for
writing networked applications in Python.

■Note If you’ve got a strict firewall in place, it will probably warn you once you start running your own
network programs; it will probably stop them from connecting to the network. You should either configure it
to let your Python do its work, or, if the firewall has an interactive interface (such as the Windows XP firewall),
simply allow the connections when asked. Note, though, that any software connected to a network is a potential
security risk, even if (or especially if) you wrote the software yourself.

A Handful of Networking Modules
There are plenty of networking modules available in the standard library, and many more
available elsewhere. In addition to those that clearly deal mainly with networking, many

298 C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G

modules (such as those that deal with various forms of data encoding for network transport)
may be seen as network-related. I’ve been fairly restrictive in my selection of modules here.

socket
A basic component in network programming is the socket. A socket is basically an “information
channel” with a program on both ends. The programs may be on different computers (connected
through a network) and may send information to each other through the socket. Most network
programming in Python hides the basic workings of the socket module, and doesn’t interact
with the sockets directly.

Sockets come in two varieties: server sockets and client sockets. After you create a server
socket, you tell it to wait for connections. It will then listen at a certain network address (a
combination of an IP address and a port number) until a client socket connects. The two can
then communicate.

Dealing with client sockets is usually quite a bit easier than dealing with the server side,
because the server has to be ready to deal with clients whenever they connect, and it must deal
with multiple connections, while the client simply connects, does its thing, and disconnects.
Later in this chapter, I deal with server programming through the SocketServer class family
and the Twisted framework.

A socket is an instance of the socket class from the socket module. It is instantiated with
up to three parameters: an address family (defaulting to socket.AF_INET), whether it’s a stream
(socket.SOCK_STREAM, the default) or a datagram (socket.SOCK_DGRAM) socket, and a protocol
(defaulting to 0, which should be okay). For a plain-vanilla socket, you don’t really have to
supply any arguments.

A server socket uses its bind method followed by a call to listen to listen to a given address.
A client socket can then connect to the server by using its connect method with the same address as
used in bind. (On the server side, you can, for example, get the name of the current machine
using the function socket.gethostname.) In this case, an address is just a tuple of the form
(host, port), where host is a host name (such as www.example.com) and port is a port number
(an integer). The listen method takes a single argument, which is the length of its backlog (the
number of connections allowed to queue up, waiting for acceptance, before connections start
being disallowed).

Once a server socket is listening, it can start accepting clients. This is done using the accept
method. This method will block (wait) until a client connects, and then it will return a tuple
of the form (client, address), where client is a client socket and address is an address, as
explained earlier. The server can then deal with the client as it sees fit, and then start waiting for
new connections, with another call to accept. This is usually done in an infinite loop.

■Note This form of server programming is called blocking or synchronous network programming. Later,
you’ll see examples of nonblocking or asynchronous network programming, as well as using threads to be
able to deal with several clients at once.

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 299

For transmitting data, sockets have two methods, send and recv (for “receive”). You can
call send with a string argument to send data, and recv with a desired (maximum) number of
bytes to receive data. If you’re not sure what number to use, 1024 is as good a choice as any.

Listings 14-1 and 14-2 show an example client/server pair that is about as simple as it gets.
If you run them on the same machine (starting the server first), the server should print out a
message about getting a connection, and the client should then print out a message it received
from the server. You can run several clients while the server is still running. By replacing the
call to gethostname in the client with the actual host name of the machine where the server is
running, you can have the two programs connect across a network from one machine to another.

■Note The port numbers you use are normally restricted. In a Linux or UNIX system, you need administrator
privileges in order to use a port below 1024. These low-numbered ports are used for standard services, such
as port 80 for your Web server (if you have one). If you stop a server with Ctrl-C, you might need to wait for a
bit before using the same port number again.

Listing 14-1. A Minimal Server

import socket

s = socket.socket()

host = socket.gethostname()
port = 1234
s.bind((host, port))

s.listen(5)
while True:
 c, addr = s.accept()
 print 'Got connection from', addr
 c.send('Thank you for connecting')
 c.close()

Listing 14-2. A Minimal Client

import socket

s = socket.socket()

host = socket.gethostname()
port = 1234

s.connect((host, port))
print s.recv(1024)

300 C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G

More Information

You can find more information about the socket module in the Standard Library Reference
(http://python.org/doc/lib/module-socket.html) and in Gordon McMillan’s Socket
Programming HOWTO (http://python.org/doc/howto/sockets).

urllib and urllib2
Of the networking libraries available, the ones that probably give you the most bang for the
buck are urllib and urllib2. They enable you to access files across a network, just as if they
were located on your computer. Through a simple function call, virtually anything you can
refer to with a Uniform Resource Locator (URL) can be used as input to your program. Just
imagine the possibilities you get if you combine this with the re module: You can download
Web pages, extract information, and create automatic reports of your findings.

The two modules do more or less the same job, with urllib2 being a bit more “fancy.” For
simple downloads, urllib is quite all right. If you need HTTP authentication or cookies, or you
want to write extensions to handle your own protocols, then urllib2 might be the right choice
for you.

Opening Remote Files

You can open remote files almost exactly as you do local files; the difference is that you can use
only read mode, and instead of open (or file), you use urlopen from the urllib module:

>>> from urllib import urlopen
>>> webpage = urlopen('http://www.python.org')

If you are online, the variable webpage should now contain a file-like object linked to the
Python Web page at http://www.python.org.

■Note If you want to experiment with urllib but aren’t currently online, you can access local files with
URLs that start with file:, such as file:c:\text\somefile.txt. (Remember to escape your backslashes.)

The file-like object that is returned from urlopen supports (among others) the close, read,
readline, and readlines methods, as well as iteration.

Let’s say you want to extract the (relative) URL of the “Tutorial” link on the Python page
you just opened. You could do that with regular expressions (see Chapter 10 in the section
about the re module; for more info about HTML, see Chapter 20):

>>> import re
>>> text = webpage.read()
>>> m = re.search('Tutorial', text, re.IGNORECASE)
>>> m.group(1)
'http://docs.python.org/tut/tut.html'

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 301

■Note At the time of writing, this code gave the exact results shown. However, by the time you read this,
the Python page may have changed, and you may have to modify the regular expression to make the code work.

Retrieving Remote Files

The urlopen function gives you a file-like object you can read from. If you would rather have
urllib take care of downloading the file for you, storing a copy in a local file, you can use
urlretrieve instead. Rather than returning a file-like object, it returns a tuple (filename, headers),
where filename is the name of the local file (this name is created automatically by urllib), and
headers contains some information about the remote file. (I’ll ignore headers here. Look up
urlretrieve in the standard library documentation of urllib if you want to know more about
it.) If you want to specify a file name for the downloaded copy, you can supply that as a second
parameter:

urlretrieve('http://www.python.org', 'C:\\python_webpage.html')

This retrieves the Python home page and stores it in the file C:\python_webpage.html. If
you don’t specify a file name, the file is put in some temporary location, available for you to
open (with the open function), but when you’re done with it, you may want to have it removed
so that it doesn’t take up space on your hard drive. To clean up such temporary files, you can
call the function urlcleanup without any arguments, and it takes care of things for you.

SOME UTILITIES

In addition to reading and downloading files through URLs, urllib also offers some functions for manipu-
lating the URLs themselves. (The following assumes some knowledge of URLs and CGI.) These functions are

• quote(string[, safe]). Returns a string in which all special characters (characters that have
special significance in URLs) have been replaced by URL-friendly versions (such as %7E instead of ~).
This can be useful if you have a string that might contain such special characters and you want to use
it as a URL. The safe string includes characters that should not be coded like this: the default is '/'.

• quote_plus(string[, safe]). Works like quote, but also replaces spaces with plus signs.

• unquote(string). The reverse of quote.

• unquote_plus(string). The reverse of quote_plus.

• urlencode(query[, doseq]). Converts a mapping (such as a dictionary) or a sequence of two-
element tuples—of the form (key, value)—into a “URL-encoded” string, which can be used in CGI
queries. (Check the Python documentation for more information.)

Other Modules
As mentioned, beyond the modules explicitly discussed in this chapter, there are hordes of
network-related modules in the Python library and elsewhere. In Table 14-1, you find a list of

302 C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G

some network-related modules from the Python standard library. As noted in the table, some
of these modules are discussed elsewhere in the book.

SocketServer and Friends
As you saw in the section about the socket module earlier, writing a simple socket server isn’t
really hard. If you want to go beyond the basics, however, getting some help can be nice. The
SocketServer module is the basis for a framework of several servers in the standard library,
including BaseHTTPServer, SimpleHTTPServer, CGIHTTPServer, SimpleXMLRPCServer, and
DocXMLRPCServer, all of which add various specific functionality to the basic server.

Table 14-1. Some Network-Related Modules in the Standard Library

Module Description

asynchat Additional functionality for asyncore (see Chapter 24)

asyncore Asynchronous socket handler (see Chapter 24)

cgi Basic CGI support (see Chapter 15)

Cookie Cookie object manipulation, mainly for servers (see Chapter 15)

cookielib Client-side cookie support (see Chapter 15)

email Support e-mail messages (including MIME)

ftplib FTP client module

gopherlib gopher client module

httplib HTTP client module

imaplib IMAP4 client module

mailbox Reads several mailbox formats

mailcap Access to MIME configuration through mailcap files

mhlib Access to MH mailboxes

nntplib NNTP client module (see Chapter 23)

poplib POP client module

robotparser Support for parsing Web server robot files

SimpleXMLRPCServer A simple XML-RPC server (see Chapter 27)

smtpd SMTP server module

smtplib SMTP client module

telnetlib telnet client module

urlparse Support for interpreting URLs

xmlrpclib Client support for XML-RPC (see Chapter 27)

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 303

SocketServer contains four basic classes: TCPServer, for TCP socket streams; UDPServer, for
UDP datagram sockets; and the more obscure UnixStreamServer and UnixDatagramServer. You
probably won’t need the last two, and, most likely, not UDPServer either.

To write a server using the SocketServer framework, you put most of your code in a request
handler. Each time the server gets a request (a connection from a client), a request handler is
instantiated, and various handler methods are called on it, to deal with the request. Exactly
which methods are called depends on the specific server and handler class used, and you can
subclass them to make the server call a custom set of handlers. The basic BaseRequestHandler
class places all of the action in a single method on the handler, called handle, which is called by
the server. This method then has access to the client socket in the attribute self.request. If
you’re working with a stream (which you probably are, if you use TCPServer), you can use the
class StreamRequestHandler, which sets up two other attributes, self.rfile (for reading) and
self.wfile (for writing). You can then use these file-like objects to communicate with the client.

The various other classes in the SocketServer framework implement basic support for
HTTP servers, including running CGI scripts, as well as support for XML-RPC (discussed in
Chapter 27).

Listing 14-3 gives you a SocketServer version of the minimal server from Listing 14-1. It
can be used with the client in Listing 14-2. Note that the StreamRequestHandler takes care of
closing the connection when it has been handled. Also note that giving '' as the host name
means that you’re referring to the machine where the server is running.

Listing 14-3. A SocketServer-Based Minimal Server

from SocketServer import TCPServer, StreamRequestHandler

class Handler(StreamRequestHandler):

 def handle(self):
 addr = self.request.getpeername()
 print 'Got connection from', addr
 self.wfile.write('Thank you for connecting')

server = TCPServer(('', 1234), Handler)
server.serve_forever()

More Information
You can find more information about the SocketServer framework in the Standard Library
Reference (http://python.org/doc/lib/module-SocketServer.html) and in John Goerzen’s
The Foundations of Python Network Programming (Apress, 2004).

Multiple Connections
The server solutions discussed so far have been synchronous: Only one client could connect
and get its request handled at a time. If one request takes a bit of time, such as, for example,
a complete chat session, it’s important that more than one connection can be dealt with
simultaneously.

304 C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G

There are three main ways of achieving this: forking, threading, and asynchronous I/O.
Forking and threading can be dealt with very simply, by using mix-in classes with any of the
SocketServer servers (as explained in a bit). Even if you want to implement them yourself,
these methods are quite easy to work with. They do have their drawbacks, however: Forking
takes up resources, and may not scale well if you have very many clients (although, for a
reasonable number of clients, on modern UNIX or Linux systems, forking is quite efficient, and
can be even more so if you have a multi-CPU system); threading can lead to synchronization
problems. I won’t go into these problems in any detail here (nor will I discuss multithreading
in depth), but I’ll show you how to use the techniques in the following sections.

Asynchronous I/O is a bit more difficult to implement at a low level. The basic mechanism
is the select function of the select module (described in a while), which is quite hard to deal
with. Luckily, frameworks exist that work with asynchronous I/O on a higher level, giving you a
simple, abstract interface to a very powerful and scalable mechanism. A basic framework of
this kind, which is in included in the standard library, consists of the asyncore and asynchat
modules, discussed in Chapter 24. Twisted (which is discussed last in this chapter) is a very
powerful asynchronous network programming framework.

FORKS? THREADS? WHAT’S ALL THIS, THEN?

Just in case you don’t know about forking or threads, here is a little clarification. Forking is a UNIX term; when
you fork a process (a running program), you basically duplicate it, and both resulting processes keep running
from the current point of execution, each with its own copy of the memory (variables and such). One process
(the original one) will be the parent process, while the other (the copy) will be the child. If you’re a science
fiction fan, you might think of parallel universes; the forking operation creates a fork in the timeline, and you
end up with two universes (the two processes) existing independently. Luckily, the processes are able to
determine whether they are the original or the child (by looking at the return value of the fork function), so
they can act differently. (If they couldn’t, what would be the point, really? Both processes would do the same
job, and you’d just bog down your computer.)

In a forking server, a child is forked off for every client connection. The parent process keeps listening
for new connections, while the child deals with the client. When the client is satisfied, the child process simply
exits. Because the forked processes run in parallel, the clients don’t have to wait for each other.

Because forking can be a bit resource-intensive (each forked process needs its own memory), an alternative
exists: threading. Threads are lightweight processes, or subprocesses, all of them existing within the same
(real) process, sharing the same memory. This reduction in resource consumption comes with a downside,
though: Because they share memory, you must make sure they don’t mess up the variables for each other, or
try to modify the same things at the same time, creating a mess. These issues fall under the heading of
“synchronization.” With modern operating systems (except Microsoft Windows, which doesn’t support forking),
forking is actually quite fast, and modern hardware can deal with the resource consumption much better than
before. If you don’t want to bother with synchronization issues, then forking may be a good alternative.

The best thing may, however, be to avoid this sort of parallelism altogether. Later in this chapter you find
other solutions, based on the select function. Another way to avoid threads and forks is to switch to Stack-
less Python (http://stackless.com), a version of Python designed to be able to switch between different
contexts quickly and painlessly. It supports a form of thread-like parallelism called microthreads, which scale
much better than real threads. For example, Stackless Python microthreads have been used in EVE Online
(http://www.eve-online.com) to serve thousands of users.

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 305

Forking and Threading with SocketServers
Creating a forking or threading server with the SocketServer framework is so simple it hardly needs
any explanation. Listings 14-4 and 14-5 show you how to make the server from Listing 14-3 forking
and threading, respectively. The forking and threading behavior is, of course, only useful if the
handle method takes a long time to finish. Note that forking doesn’t work in Windows.

Listing 14-4. A Forking Server

from SocketServer import TCPServer, ForkingMixIn, StreamRequestHandler

class Server(ForkingMixIn, TCPServer): pass

class Handler(StreamRequestHandler):

 def handle(self):
 addr = self.request.getpeername()
 print 'Got connection from', addr
 self.wfile.write('Thank you for connecting')

server = Server(('', 1234), Handler)
server.serve_forever()

Listing 14-5. A Threading Server

from SocketServer import TCPServer, ThreadingMixIn, StreamRequestHandler

class Server(ThreadingMixIn, TCPServer): pass

class Handler(StreamRequestHandler):

 def handle(self):
 addr = self.request.getpeername()
 print 'Got connection from', addr
 self.wfile.write('Thank you for connecting')

server = Server(('', 1234), Handler)
server.serve_forever()

Asynchronous I/O with select and poll
When a server communicates with a client, the data it receives from the client may come in fits
and spurts. If you’re using forking and threading, that’s not a problem. While one parallel waits
for data, other parallels may continue dealing with their own clients. Another way to go, however,
is to deal only with the clients that actually have something to say at a given moment. You don’t
even have to hear them out—you just hear (or, rather, read) a little bit, and then put it back in
line with the others.

306 C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G

This is the approach taken by the frameworks asyncore/asynchat (see Chapter 24) and
Twisted (see the following section), and the basis for this kind of functionality is the select
function, or, where available, the poll function, both from the select module. Of the two, poll
is more scalable, but it is only available in UNIX systems (that is, not in Windows).

The select function takes three sequences as its mandatory arguments, with an optional
timeout in seconds as its fourth argument. The sequences are file descriptor integers (or objects
with a fileno method that returns such an integer). These are the connections that we’re waiting
for. The three sequences are for input, output, and exceptional conditions (errors and the like).
If no timeout is given, select blocks (that is, waits) until one of the file descriptors is ready for
action; if a timeout is given, select blocks for at most that many seconds, with zero giving a
straight poll (that is, no blocking). The return value from select is a triple of sequences, each
representing an active subset of the corresponding parameter. For example, the first sequence
returned will be a sequence of input file descriptors where there is something to read.

The sequences can, for example, contain file objects (not in Windows) or sockets. Listing 14-6
shows a server using select to serve several connections. (Note that the server socket itself is
supplied to select, so that it can signal when there are new connections ready to be accepted.)
The server is a simple logger that simply prints out (locally) all data received from its clients.
You can test it by connecting to it using telnet (or by writing a simple socket-based client that
feeds it some data). Try connecting with multiple telnet connections to see that it can serve
more than one client at once (although its log will then be a mixture of the input from the two).

Listing 14-6. A Simple Server Using select

import socket, select

s = socket.socket()

host = socket.gethostname()
port = 1234
s.bind((host, port))

s.listen(5)
inputs = [s]
while True:
 rs, ws, es = select.select(inputs, [], [])
 for r in rs:
 if r is s:
 c, addr = s.accept()
 print 'Got connection from', addr
 inputs.append(c)
 else:
 try:
 data = r.recv(1024)
 disconnected = not data
 except socket.error:
 disconnected = True

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 307

 if disconnected:
 print r.getpeername(), 'disconnected'
 inputs.remove(r)
 else:
 print data

The poll method is easier to use than select. When you call poll, you get a poll object. You
can then register file descriptors (or objects with a fileno method) with the polling object, using
its register method. You can later remove such objects again, using the unregister method.
Once you’ve registered some objects (for example, sockets), you can call the poll method (with
an optional timeout argument) and get a list (possibly empty) of pairs of the form (fd, event),
where fd is the file descriptor and event tells you what happened. It’s a bitmask, meaning that
it’s an integer where the individual bits correspond to various events. The various events are
constants of the select module, and are explained in Table 14-2. To check whether a given bit
is set (that is, if a given event occurred), you use the bitwise and operator (&), like this:

if event & select.POLLIN: ...

The program in Listing 14-7 is a rewrite of the server from Listing 14-6, now using poll
instead of select. Note that I’ve added a map (fdmap) from file descriptors (ints) to socket objects.

Listing 14-7. A Simple Server Using poll

import socket, select

s = socket.socket()

host = socket.gethostname()
port = 1234
s.bind((host, port))

fdmap = {s.fileno(): s}

Table 14-2. Polling Event Constants in the select Module

Event Name Description

POLLIN There is data to read available from the file descriptor.

POLLPRI There is urgent data to read from the file descriptor.

POLLOUT The file descriptor is ready for data, and will not block if written to.

POLLERR Some error condition is associated with the file descriptor.

POLLHUP Hung up. The connection has been lost.

POLLNVAL Invalid request. The connection is not open.

308 C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G

s.listen(5)
p = select.poll()
p.register(s)
while True:
 events = p.poll()
 for fd, event in events:
 if fdmap[fd] is s:
 c, addr = s.accept()
 print 'Got connection from', addr
 p.register(c)
 fdmap[c.fileno()] = c
 elif event & select.POLLIN:
 data = fdmap[fd].recv(1024)
 if not data: # No data -- connection closed
 print fdmap[fd].getpeername(), 'disconnected'
 p.unregister(fd)
 del fdmap[fd]
 else:
 print data

More Information

You can find more information about select and poll in the Python Standard Library Reference
(http://python.org/doc/lib/module-select.html). Also, reading the source code of the stan-
dard library modules asyncore and asynchat (found in the asyncore.py and asynchat.py files in
your Python installation) can be enlightening.

Twisted
Twisted, from Twisted Matrix Laboratories (http://twistedmatrix.com), is an event-driven
networking framework for Python, originally developed for network games but now used by all
kinds of network software. In Twisted, you implement event handlers, much like you would in
a GUI toolkit (see Chapter 12). In fact, Twisted works quite nicely together with several common
GUI toolkits (Tk, GTK, Qt, and wxWidgets). The Twisted documentation may not always be
easy to navigate (although it’s continuously improving), but there is much information to be
found on the Twisted Matrix Web site, twistedmatrix.com. In this section, I’ll cover some of the
basic concepts and show you how to do some relatively simple network programming using
Twisted. Once you grasp the basic concepts, you can check out the Twisted documentation to
do some more serious network programming. Twisted is a very rich framework and supports,
among other things, Web servers and clients, SSH2, SMTP, POP3, IMAP4, AIM, ICQ, IRC, MSN,
Jabber, NNTP, DNS, and more!

Downloading and Installing Twisted
Installing Twisted is quite easy. First, go to the Twisted Matrix Web page (http://
twistedmatrix.com) and, from there, follow the link to the download page. If you’re using
Windows, download the Windows installer for your version of Python; if you’re using some

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 309

other system, download a source archive. (If you’re using a package manager such as Portage,
RPM, APT, or Fink, you can probably get it to download and install Twisted directly.) The
Windows installer is a self-explanatory step-by-step wizard. It may take some time compiling
and unpacking things, but all you have to do is wait. To install the source archive, you first
unpack it (using tar and then either gunzip or bunzip2, depending on which type of archive you
downloaded) and then run the Distutils script:

python setup.py install

You should then be able to use Twisted.

Writing a Twisted Server
The basic socket servers written earlier in this chapter are very explicit. Some of them have an
explicit event loop, looking for new connections and new data; SocketServer-based servers
have an implicit loop where the server looks for connections and creates a handler for each
connection, but the handlers still have to be explicit about trying to read data. Twisted (and the
asyncore/asynchat framework, discussed in Chapter 24) uses an even more event-based approach.
To write a basic server, you implement event handlers that deal with situations such as a new
client connecting, new data arriving, and a client disconnecting (as well as many other events).
Specialized classes can build more refined events from the basic ones, such as wrapping “data
arrived” events, collecting the data until a newline is found, and then dispatching a “line of
data arrived” event. (Such a class is discussed later.)

■Note One thing I have not dealt with in this section, but which is somewhat characteristic of Twisted, is
the concept of deferreds and deferred execution. See the Twisted documentation for more information (see,
for example, the tutorial called “Deferreds are beautiful,” available from the HOWTO page of the Twisted docs).

Your event handlers are defined in a protocol; you also need a factory that can construct
such protocol objects when a new connection arrives, but if you just want to create instances
of a custom protocol class, you can use the factory that comes with Twisted, the Factory class
in the module twisted.internet.protocol. When you write your protocol, use the Protocol
from the same module as your superclass. When you get a connection, the event handler
connectionMade is called; when you lose a connection, connectionLost is called. Data is received
from the client through the handler dataReceived. Of course, you can’t use the event-handling
strategy to send data back to the client; for that you use the object self.transport, which has a
write method. It also has a client attribute, which contains the client address (host name
and port).

Listing 14-8 contains a Twisted version of the server from Listings 14-6 and 14-7. I hope
you agree that the Twisted version is quite a bit simpler and more readable. There is a little bit
of setup involved; you have to instantiate Factory and set its protocol attribute so it knows
which protocol to use when communicating with clients (that is, your custom protocol). Then
you start listening at a given port with that factory standing by to handle connections by instan-
tiating protocol objects. You do this using the listenTCP function from the reactor module. Finally,
you start the server by calling the run function from the same module.

310 C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G

Listing 14-8. A Simple Server Using Twisted

from twisted.internet import reactor
from twisted.internet.protocol import Protocol, Factory

class SimpleLogger(Protocol):

 def connectionMade(self):
 print 'Got connection from', self.transport.client

 def connectionLost(self, reason):
 print self.transport.client, 'disconnected'

 def dataReceived(self, data):
 print data

factory = Factory()
factory.protocol = SimpleLogger

reactor.listenTCP(1234, factory)
reactor.run()

If you connected to this server using telnet, to test it out, you may have gotten a single
character on each line of output, depending on buffering and the like. You could, of course,
simply use sys.stdout.write instead of print, but in many cases you might like to get a
single line at a time, instead of just arbitrary data. Writing a custom protocol that handled
this for you would be quite easy, but there is, in fact, such a class available already. The module
twisted.protocols.basic contains a couple of useful preexisting protocols, among them
LineReceiver. It implements dataReceived and calls the event handler lineReceived whenever
a full line is received.

■Tip If you need to do something when you receive data in addition to using lineReceived, which
depends on the LineReceiver implementation of dataReceived, you can use the new event handler
defined by LineReceiver called rawDataReceived.

Switching the protocol requires only a minimum of work. Listing 14-9 shows the result. If
you look at the resulting output when running this server, you’ll see that the newlines are stripped;
in other words, using print won’t give you double newlines anymore.

Listing 14-9. An Improved Logging Server, Using the LineReceiver Protocol

from twisted.internet import reactor
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G 311

class SimpleLogger(LineReceiver):

 def connectionMade(self):
 print 'Got connection from', self.transport.client

 def connectionLost(self, reason):
 print self.transport.client, 'disconnected'

 def lineReceived(self, line):
 print line

factory = Factory()
factory.protocol = SimpleLogger

reactor.listenTCP(1234, factory)
reactor.run()

There is a lot more to the Twisted framework than what I’ve shown you here. If you’re
interested in learning more, you should check out the online documentation, available at the
Twisted Web site (http://twistedmatrix.com).

A Quick Summary
This chapter has given you a taste of several approaches to network programming in Python.
Which approach you choose will depend on your specific needs and preferences. Once you’ve
chosen, you will, most likely, need to learn more about the specific method than I can explain
in this chapter. Here are some of the topics this chapter touched upon:

Sockets and the socket module. Sockets are information channels that let programs
(processes) communicate, possibly across a network. The socket module gives you low-
level access to both client and server sockets. Server sockets listen at a given address for
client connections, while clients simply connect directly.

urllib and urllib2. These modules let you read and download data from various servers,
given a URL to the data source. The urllib module is a simpler implementation, while
urllib2 is very extensible and quite powerful. Both work through straightforward functions
such as urlopen.

The SocketServer framework. This is a network of synchronous server base classes, found
in the standard library, which lets you write servers quite easily. There is even support for
simple Web (HTTP) servers with CGI. If you want to handle several connections simulta-
neously, you need to use a forking or threading mix-in class.

select and poll. These two functions let you consider a set of connections and find out
which ones are ready for reading and writing. This means that you can serve several
connections piecemeal, in a round-robin fashion. This gives the illusion of handling
several connections at the same time, and, although superficially a bit more complicated
to code, is a much more scalable and efficient solution than threading or forking.

312 C H A P T E R 1 4 ■ N E T W O R K P R O G R A M M I N G

Twisted. This framework, from Twisted Matrix Laboratories, is very rich and complex,
with support for most major network protocols. Even though it is large, and some of the
idioms used may seem a bit foreign, basic usage is very simple and intuitive. The Twisted
framework is also asynchronous, so it’s very efficient and scalable. If you have Twisted
available, it may very well be the best choice for many custom network applications.

New Functions in This Chapter

What Now?
You thought we were finished with network stuff now, huh? Not a chance. The next chapter
deals with a quite specialized and much-publicized entity in the world of networking: the Web.

Function Description

urllib.urlopen(url[, data[, proxies]]) Opens a file-like object from a URL

urllib.urlretrieve(url[, fname[, hook[, data]]]) Downloads a file from a URL

urllib.quote(string[, safe]) Quotes special URL characters

urllib.quote_plus(string[, safe]) The same, but quotes space as +

urllib.unquote(string) The reverse of quote

urllib.unquote_plus(string) The reverse of quote_plus

urllib.urlencode(query[, doseq]) Encodes mapping for use in CGI
queries

select.select(iseq, oseq, eseq[, timeout]) Finds sockets ready for
reading/writing

select.poll() Creates a poll object, for polling
sockets

reactor.listenTCP(port, factory) Twisted function; listens for
connections

reactor.run() Twisted function; main server loop

313

■ ■ ■

C H A P T E R 1 5

Python and the Web

This chapter tackles some aspects of Web programming with Python. This is a really vast area,
but I've selected four main topics for your amusement: screen scraping, CGI, mod_python,
and Web services. For extended examples using CGI, see Chapters 25 and 26. For an example
of using the specific Web service protocol XML-RPC, see Chapter 27.

WHAT ABOUT ZOPE?

One area that I do not cover here, because it is really a topic worthy of books of its own (and such books have
been written), is Web development with Zope. If you want to know more about Zope, a pure Python application
server for Web development, you should check the Zope Web site (http://zope.org). A content manage-
ment system built on Zope that is getting quite popular is Plone (http://plone.org). It, too, is definitely
worth a look.

There are many other Web development frameworks available for Python as well, some based on Zope
and some not. Some options include Twisted (discussed in Chapter 14), along with its built-in Web server,
CherryPy (http://cherrypy.org), SkunkWeb (http://skunkweb.sf.net), Webware for Python
(http://webwareforpython.org), Quixote (http://mems-exchange.org/software/quixote),
Spyce (http://spyce.sf.net), and Albatross (http://www.object-craft.com.au/projects/
albatross). For a discussion of these options, see The Web Framework Shootout (http://colorstudy.
com/docs/shootout.html). You should also check out the Python Wiki page on Web programming
(http://wiki.python.org/moin/WebProgramming).

Screen Scraping
Screen scraping is a process whereby your program downloads Web pages and extracts infor-
mation from them. This is a useful technique that pops up every time there is a page online that
has information you want to use in your program. It is especially useful, of course, if the Web
page in question is dynamic, that is, it changes over time. Otherwise, you could just download
it once, and extract the information manually. (The ideal situation is, of course, one where the
information is available through Web services, as discussed later in this chapter.)

Conceptually, the technique is very simple. You download the data and analyze it. You
could, for example, simply use urllib, get the Web page’s HTML source, and then use regular
expressions (see Chapter 10) or some such to extract the information. Let’s say, for example,

314 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

that you wanted to extract the various employer names and Web sites from the Python Job
Board, at http://python.org/Jobs.html. You browse the source and see that the names and
URLs can be found as links in h4 elements, like this (except on one, unbroken line):

<h4><a class="reference"
href="http://www.google.com">Google ...

Listing 15-1 gives an example program using urllib and re to extract the required
information.

Listing 15-1. A Simple Screen Scraping Program

from urllib import urlopen
import re
p = re.compile('<h4><a .*?><a .*? href="(.*?)">(.*?)')
text = urlopen('http://python.org/Jobs.html').read()
for url, name in p.findall(text):
 print '%s (%s)' % (name, url)

The code could certainly be improved (for example, by filtering out duplicates), but it does
its job pretty well. There are, however, at least three weaknesses with this approach:

• The regular expression isn’t exactly readable. For more complex HTML code and more
complex queries, the expressions can become even more hairy and unmaintainable.

• It doesn’t deal with HTML peculiarities like CDATA sections and character entities (such
as &). If you encounter such beasts, the program will, most likely, fail.

• The regular expression is tied to details in the HTML source code, rather than some more
abstract structure. This means that small changes in how the Web page is structured can
break the program.

The following sections deal with two possible solutions for the problems posed by the
regular expression-based approach. The first is to use a program called Tidy (as a Python
library) together with XHTML parsing; the second is to use a library called Beautiful Soup,
specifically designed for screen scraping.

Tidy and XHTML Parsing
The Python standard library has plenty of support for parsing structured formats such as HTML
and XML (see the Python Library Reference, Section 13, “Structured Markup Processing Tools,”
at http://python.org/doc/lib/markup.html). I discuss XML and XML parsing more in-depth in
Chapter 22; in this section, I just give you the tools needed to deal with XHTML, the most up-
to-date dialect of HTML, which just happens to be a form of XML.

If every Web page consisted of correct and valid XHTML, the job of parsing it would be
quite simple. The problem is that older HTML dialects are a bit more sloppy, and some people
don’t even care about the strictures of those sloppier dialects. The reason for this is, probably,
that most Web browsers are quite forgiving, and will try to render even the most jumbled and

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 315

meaningless HTML as best they can. If this happens to look acceptable to the page author, he
or she may be satisfied. This does make the job of screen scraping quite a bit harder, though.

The general approach for parsing HTML in the standard library is event-based; you write
event handlers that are called as the parser moves along the data. The standard library modules
sgmllib and htmllib will let you parse really sloppy HTML in this manner, but if you want to
extract data based on document structure (such as the first item after the second level-two
heading), you’ll have to do some heavy guessing if there are missing tags, for example. You are
certainly welcome to do this, if you like, but there is another way: Tidy.

What’s Tidy?

Tidy (http://tidy.sf.net) is a tool for fixing ill-formed and sloppy HTML. It can fix a range of
common errors in a rather intelligent manner, doing lots of work that you’d probably rather
not do yourself. It’s also quite configurable, letting you turn various corrections on or off.

Here is an example of an HTML file filled with errors: some of them just Old Skool HTML,
and some of them plain wrong (can you spot all the problems?):

<h1>Pet Shop
<h2>Complaints</h3>

<p>There is no <i>way at all</i> we can accept returned
parrots.

<h1><i>Dead Pets</h1>

<p>Our pets may tend to rest at times, but rarely die within the
warranty period.

<i><h2>News</h2></i>

<p>We have just received a really nice parrot.

<p>It's really nice.

<h3><hr>The Norwegian Blue</h3>

<h4>Plumage and <hr>pining behavior</h4>
More information<a>

<p>Features:
<body>
Beautiful plumage

Here is the version that is fixed by Tidy:

316 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title></title>
</head>
<body>
<h1>Pet Shop</h1>
<h2>Complaints</h2>
<p>There is no <i>way</i> at all we can accept returned
parrots.</p>
<h1><i>Dead Pets</i></h1>
<p>Our pets may tend to rest at times, but rarely die within the
warranty period.</p>
<h2><i>News</i></h2>
<p>We have just received a really nice parrot.</p>
<p>It's really nice.</p>
<hr>
<h3>The Norwegian Blue</h3>
<h4>Plumage and</h4>
<hr>
<h4>pining behavior</h4>
More information
<p>Features:</p>
<ul class="noindent">
Beautiful plumage

</body>
</html>

Of course, Tidy can’t fix all problems with an HTML file, but it does make sure it’s well-
formed (that is, all elements nest properly), which makes it much easier for you to parse it.

Getting a Tidy Library

You can get Tidy and the library version of Tidy, Tidylib, from http://tidy.sf.net. There are
wrappers for this library for several languages; however, at the time of writing, there is none for
Python at this Web site. You can get Python wrappers for Tidy from other places, though; there
is µTidyLib at http://utidylib.berlios.de and mxTidy at http://egenix.com/files/python/
mxTidy.html.

At the time of writing, µTidyLib seems to be the most up to date of the two, but mxTidy is
a bit easier to install. In Windows, simply download the installer for mxTidy, run it, and you
have the module mx.Tidy at your fingertips. There are also RPM packages available. If you want
to install the source package (presumably in a UNIX or Linux environment), you can simply
run the distutils script, using python setup.py install.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 317

■Note The package containing mxTidy will, in fact, give you more tools than just Tidy, but that shouldn’t
be a problem.

Using Command-Line Tidy in Python

You don’t have to install either of the libraries, though. If you’re running a UNIX or Linux
machine of some sort, it’s quite possible that you have the command-line version of Tidy available.
And no matter what OS you’re using, you can probably get an executable binary from the
TidyLib Web site (http://tidy.sf.net).

Once you’ve got that, you can use the subprocess module (or some of the popen functions)
to run the Tidy program. Assume, for example, that you have a messy HTML file called messy.html;
then the following program will run Tidy on it and print the result. Instead of printing the result,
you would, most likely, extract some useful information from it, as demonstrated in the
following sections.

from subprocess import Popen, PIPE

text = open('messy.html').read()
tidy = Popen('tidy', stdin=PIPE, stdout=PIPE, stderr=PIPE)

tidy.stdin.write(text)
tidy.stdin.close()

print tidy.stdout.read()

But Why XHTML?

The main difference between XHTML and older forms of HTML (at least for our current purposes)
is that XHTML is quite strict about closing all elements explicitly. So where you in HTML might
end one paragraph simply by beginning another (with a <p> tag), in XHTML you first have to
close the paragraph explicitly (with a </p> tag). This makes XHTML much easier to parse, because
you can tell directly when you enter or leave the various elements. Another advantage of XHTML
(which I won’t really capitalize on in this chapter) is that it is an XML dialect, so you can use all
kinds of nifty XML tools on it, such as XPath. For example, the links to the firms extracted by the
program in Listing 15-1 could also be extracted by the XPath expression //h4/a/@href. (For
more about XML, see Chapter 22; for more about the uses of XPath, see, for example, http://
www.w3schools.com/xpath.)

A very simple way of parsing the kind of well-behaved XHTML we get from Tidy is using
the standard library module (and class) HTMLParser (not to be confused with the class HTMLParser
from the htmllib module, which you can also use, of course, if you’re so inclined; it’s more
liberal in accepting ill-formed input).

318 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

Using HTMLParser

Using HTMLParser simply means subclassing it, and overriding various event-handling methods
such as handle_starttag or handle_data. Table 15-1 summarizes the relevant methods, and
when they’re called (automatically) by the parser.

For screen scraping purposes, you usually won’t need to implement all the parser callbacks
(the event handlers), and you probably won’t have to construct some abstract representation
of the entire document (such as a document tree) to find what you need. If you just keep track
of the minimum of information needed to find what you’re looking for, you’re in business. (See
Chapter 22 for more about this topic, in the context of XML parsing with SAX.) Listing 15-2
shows a program that solves the same problem as Listing 15-1, but this time using HTMLParser.

Listing 15-2. A Screen Scraping Program Using the HTMLParser Module

from urllib import urlopen
from HTMLParser import HTMLParser

class Scraper(HTMLParser):

 in_h4 = False
 in_link = False

 def handle_starttag(self, tag, attrs):
 attrs = dict(attrs)
 if tag == 'h4':
 self.in_h4 = True

Table 15-1. The HTMLParser Callback Methods

Callback Method When Is It Called?

handle_starttag(tag, attrs) When a start tag is found. attrs is a sequence of
(name, value) pairs.

handle_startendtag(tag, attrs) For empty tags; default handles start and end separately.

handle_endtag(tag) When an end tag is found.

handle_data(data) For textual data.

handle_charref(ref) For character references of the form &#ref;.

handle_entityref(name) For entity references of the form &name;.

handle_comment(data) For comments; only called with the comment contents.

handle_decl(decl) For declarations of the form <!...>.

handle_pi(data) For processing instructions.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 319

 if tag == 'a' and 'href' in attrs:
 self.in_link = True
 self.chunks = []
 self.url = attrs['href']

 def handle_data(self, data):
 if self.in_link:
 self.chunks.append(data)

 def handle_endtag(self, tag):
 if tag == 'h4':
 self.in_h4 = False
 if tag == 'a':
 if self.in_h4 and self.in_link:
 print '%s (%s)' % (''.join(self.chunks), self.url)
 self.in_link = False

text = urlopen('http://python.org/Jobs.html').read()
parser = Scraper()
parser.feed(text)
parser.close()

A few things are worth noting. First of all, I’ve dropped the use of Tidy here, because the
HTML in the Web page is well behaved enough. If you’re lucky, you may find that you don’t
need to use Tidy either. Also note that I’ve used a couple of Boolean state variables (attributes)
to keep track of whether I’m inside h4 elements and links. I check and update these in the event
handlers. The attrs argument to handle_starttag is a list of (key, value) tuples, so I’ve used
dict to turn them into a dictionary, which I find to be more manageable.

The handle_data method (and the chunks attribute) may need some explanation. It uses a
technique similar to that used in Chapter 22, and which is quite common in event-based parsing
of structured markup such as HTML and XML. Instead of assuming that I’ll get all the text I need
in a single call to handle_data, I assume that I may get several chunks of it, spread over more
than one call. There are several reasons why this may happen—buffering, character entities,
markup that I’ve ignored—I just have to make sure I get all the text. Then, when I’m ready to
present my result (in the handle_endtag method), I simply join all the chunks together. To
actually run the parser, I call its feed method with the text, and then call its close method.

This solution is, most likely, more robust to any changes in the input data than the version
using regular expressions. Still, you may object that it is too verbose (it’s certainly more verbose
than the XPath expression, for example) and perhaps almost as hard to understand as the
regular expression. For a more complex extraction task, the arguments in favor of this sort of
parsing might seem more convincing, but one is still left with the feeling that there has to be a
better way. And, if you don’t mind installing another module, there is . . .

Beautiful Soup
Beautiful Soup is a spiffing little module for parsing and dissecting the kind of HTML you often
find on the Web—the sloppy and ill-formed kind. To quote the Beautiful Soup Web site (http://
crummy.com/software/BeautifulSoup):

320 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

You didn’t write that awful page. You’re just trying to get some data out of it. Right now,
you don’t really care what HTML is supposed to look like.

Neither does this parser.

—(Beautiful Soup Web site, May 2005)

Downloading and installing Beautiful Soup (as of version 2.1.0) is a breeze: Download the
file BeautifulSoup.py and put it in your Python path (for example, in the site-packages directory
of your Python installation). If you want, you can instead download a tar archive with installer
scripts and tests. With Beautiful Soup installed, the running example of extracting Python jobs from
the Python Job Board becomes really, really simple—and readable, as shown in Listing 15-3.

Listing 15-3. A Screen Scraping Program Using Beautiful Soup

from urllib import urlopen
from BeautifulSoup import BeautifulSoup

text = urlopen('http://python.org/Jobs.html').read()
soup = BeautifulSoup(text)

jobs = set()
for header in soup('h4'):
 links = header('a', 'reference')
 if not links: continue
 link = links[0]
 jobs.add('%s (%s)' % (link.string, link['href']))

print '\n'.join(sorted(jobs, key=lambda s: s.lower()))

I simply instantiate the BeautifulSoup class with the HTML text I want to scrape, and
then use various mechanisms to extract parts of the resulting parse tree. For example, I call
soup('h4') to get a list of all h4 elements. I iterate over these, binding the header variable to
each one in turn, and call header('a', 'reference') to get a list of a child elements of the
reference class (I’m talking CSS classes here). I could also have followed the strategy from
previous examples, of retrieving the a elements that have href attributes; in Beautiful Soup,
using class attributes like this is easier.

As I’m sure you noticed, I added the use of set and sorted (with a key function set to ignore
case differences) in Listing 15-3. This has nothing to do with Beautiful Soup; it was just to make
the program more useful, by eliminating duplicates and printing the names in sorted order.

■Note There are other tools for screen scraping with Python. You might, for example, want to check out
Ka-Ping Yee’s scrape.py (found at http://zesty.ca/python).

If you want to use your scrapings for an RSS feed (discussed later in this chapter), you
can use another tool related to Beautiful Soup, called Scrape ’N’ Feed (at http://crummy.com/
software/ScrapeNFeed).

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 321

Dynamic Web Pages with CGI
This section deals with a basic Web programming technology: the Common Gateway Interface,
or CGI. CGI is a standard mechanism by which a Web server can pass your queries (typically
supplied through a Web form) to a dedicated program (for example, your Python program) and
display the result as a Web page. It is a simple way of creating Web applications without writing
your own special-purpose application server. For more information about CGI programming in
Python, see the Web Programming Topic Guide on the Python Web site (http://python.org/
topics/web).

The key tool in Python CGI programming is the cgi module. You can find a thorough
description of it in the Python Library Reference (http://python.org/doc/lib/module-cgi.html).
Another module that can be very useful during the development of CGI scripts is cgitb—more
about that later.

Before you can make your CGI scripts accessible (and runnable) through the Web, you
need to put them where a Web server can access them, add a pound bang line, and set the
proper file permissions. These three steps are explained in the following sections.

Step 1. Preparing the Web Server
I’m assuming that you have access to a Web server—in other words, that you can put stuff on
the Web. Usually, that is a matter of putting your Web pages, images, and so on in a particular
directory (in UNIX, typically called public_html). If you don’t know how to do this, you should
ask your ISP or system administrator.

Your CGI programs must also be put in a directory where they can be accessed via the
Web. In addition, they must somehow be identified as CGI scripts, so the Web server doesn’t
just serve the plain source code as a Web page. There are two typical ways of doing this:

• Put the script in a subdirectory called cgi-bin.

• Give your script the file name extension .cgi.

Exactly how this works varies from server to server—again, check with your ISP or system
administrator if you’re in doubt. (For example, if you’re using Apache, you may need to turn on
the ExecCGI option for the directory in question.)

Step 2. Adding the Pound Bang Line
When you’ve put the script in the right place (and possibly given it a specific file name extension),
you must add a pound bang line to the beginning of the script. I mentioned this in Chapter 1 as
a way of executing your scripts without having to explicitly execute the Python interpreter.
Usually, this is just convenient, but for CGI scripts it’s crucial; without it, the Web server won’t
know how to execute your script. (For all it knows, the script could be written in some other
programming language such as Perl or Ruby.) In general, simply adding the following line to
the beginning of your script will do:

#!/usr/bin/env python

Note that it has to be the very first line. (No empty lines before it.) If that doesn’t work, you
have to find out exactly where the Python executable is and use the full path in the pound bang
line, as in the following:

322 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

#!/usr/bin/python

If this doesn’t work, it may be that there’s something wrong that you cannot see, namely
that the line ends in \r\n instead of simply \n, and your Web server gets confused. Make sure
you’re saving the file as a plain UNIX-style text file.

In Windows, you would use the full path to your Python binary, such as

#!C:\Python22\python.exe

Step 3. Setting the File Permissions
The last thing you have to do (at least if your Web server is running on a UNIX or Linux machine) is
to set the proper file permissions. You must make sure that everyone is allowed to read and
execute your script file (otherwise the Web server wouldn’t be able to run it), but also make sure
that only you are allowed to write to it (so nobody can change your script).

■Tip Sometimes, if you edit a script in Windows and it’s stored on a UNIX disk server (you may be accessing
it through Samba or FTP, for example), the file permissions may be fouled up after you’ve made a change to
your script. So if your script won’t run, make sure that the permissions are still correct.

The UNIX command for changing file permissions (or file mode) is chmod. Simply run the
following command (if your script is called somescript.cgi):

chmod 755 somescript.cgi

After having performed all these preparations, you should be able to open the script as if it
were a Web page and have it executed.

■Note You shouldn’t open the script in your browser as a local file—you must open it with a full URL so
that you actually fetch it via the Web (through your Web server).

Your CGI script won’t normally be allowed to modify any files on your computer. If you
want to allow it to change a file, you have to explicitly give it permission to do so. You have two
options. If you have root (system administrator) privileges, you may create a specific user
account for your script and change ownership of the files that need to be modified. If you don’t
have root access, you can set the file permissions for the file so all users on the system (including
that used by the Web server to run your CGI scripts) are allowed to write to the file. You can set
the file permissions with this command:

chmod 666 editable_file.txt

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 323

■Caution This also means that everyone who has a user account on the machine can edit your file. You
should be extremely cautious about this, especially if the file you are modifying is accessible through your
Web server. If you are in doubt, ask your ISP or system administrator for advice. See also the following
section, “CGI Security Risks.”

CGI Security Risks
Note that there are security issues involved in using CGI programs. If you allow your CGI script
to write to files on your server, that ability may be used to destroy data unless you code your
program carefully. Similarly, if you evaluate data supplied by a user as if it were Python code
(for example, with exec or eval) or as a shell command (for example, with os.system or using
the subprocess module), you risk performing arbitrary commands, which is a huge (as in
humongous) risk. For a relatively comprehensive source of information about Web security,
see the World Wide Web Consortium’s security FAQ (http://www.w3.org/Security/Faq). See
also the security note on the subject in the Python Library Reference (http://python.org/doc/
lib/cgi-security.html).

A Simple CGI Script
The simplest possible CGI script looks something like Listing 15-4.

Listing 15-4. A Simple CGI Script

#!/usr/bin/env python

print 'Content-type: text/plain'
print # Prints an empty line, to end the headers

print 'Hello, world!'

If you save this in a file called simple1.cgi and open it through your Web server, you should
see a Web page containing only the words “Hello, world!” in plain text. To be able to open this
file through a Web server, you must put it where the Web server can access it. In a typical UNIX
environment, putting it in a directory called public_html in your home directory would enable
you to open it with the URL http://localhost/~username/simple1.cgi (substitute your user
name for username). Ask your ISP or system administrator for details.

As you can see, everything the program writes to standard output (for example, with print)
ends up in the resulting Web page—at least almost. The fact is that the first things you print are
HTTP headers—lines of information about the page. The only header I concern myself with
here is Content-type. As you can see, the phrase “Content-type” is followed by a colon, a space,
and the type name text/plain. This indicates that the page is plain text; to indicate HTML, this
line should instead be

print 'Content-type: text/html'

324 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

■Note The names text/plain and text/html refer to MIME (Multipurpose Internet Mail Extensions)
types. For a list of official MIME types, see http://www.iana.org/assignments/media-types.

After all the headers have been printed, a single empty line is printed to signal that the
document itself is about to begin. And, as you can see, in this case the document is simply the
string "Hello, world!".

Debugging with cgitb
Sometimes a programming error makes your program terminate with a stacktrace due to an
uncaught exception. When running the program through CGI, this will most likely result in an
unhelpful error message from the Web server. In Python 2.2, a new module called cgitb (for
CGI traceback) was added to the standard library. By importing it and calling its enable function,
you can get a quite helpful Web page with information about what went wrong. Listing 15-5
gives an example of how you might use the cgitb module.

Listing 15-5. A CGI Script That Invokes a Traceback (faulty.cgi)

#!/usr/bin/env python

import cgitb; cgitb.enable()

print 'Content-type: text/html'

print

print 1/0

print 'Hello, world!'

The result of accessing this script in a browser (through a Web server) is shown in
Figure 15-1.

Note that you might want to turn off the cgitb functionality after developing the program; the
traceback page isn’t meant for the casual user of your program. (An alternative is to turn off the
display and log the errors to files instead. See the Python Library Reference for more information.)

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 325

Figure 15-1. A CGI traceback from the cgitb module

Using the cgi Module
So far the programs have only produced output; they haven’t used any form of input. Input is
supplied to the CGI script from an HTML form (described in the next section) as key-value
pairs, or fields. You can retrieve these fields in your CGI script using the FieldStorage class
from the cgi module. When you create your FieldStorage instance (you should create only
one), it fetches the input variables (or fields) from the request and presents them to your program
through a dictionary-like interface. The values of the FieldStorage can be accessed through
ordinary key lookup, but due to some technicalities (related to file uploads, which we won’t be
dealing with here) the elements of the FieldStorage aren’t really the values you’re after. For
example, if you know the request contained a value named name, you couldn’t simply do this:

form = cgi.FieldStorage()
name = form['name']

You’d have to do this:

form = cgi.FieldStorage()
name = form['name'].value

326 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

A simpler way of fetching the values is the getvalue method, which is similar to the dictio-
nary method get, except that it returns the value of the value attribute of the item. For example:

form = cgi.FieldStorage()
name = form.getvalue('name', 'Unknown')

In the preceding example, I have supplied a default value ('Unknown'). If you don’t supply
one, None will be the default. The default is used if the field is not filled in.

Listing 15-6 contains a simple example that uses cgi.FieldStorage.

Listing 15-6. A CGI Script That Retrieves a Single Value from a FieldStorage (simple2.cgi)

#!/usr/bin/env python

import cgi
form = cgi.FieldStorage()

name = form.getvalue('name', 'world')

print 'Content-type: text/plain'
print

print 'Hello, %s!' % name

INVOKING CGI SCRIPTS WITHOUT FORMS

Input to CGI scripts generally comes from Web forms that have been submitted, but it is also possible to call
the CGI program with parameters directly. You do this by adding a question mark after the URL to your script,
and then adding key-value pairs separated by ampersands (&). For example, if the URL to the script in
Listing 15-6 were http://www.someserver.com/simple2.cgi, you could call it with name=Gumby and
age=42 with the URL http://www.someserver.com/simple2.cgi?name=Gumby&age=42. If you try
that, you should get the message “Hello, Gumby!” instead of “Hello, world!” from your CGI script. (Note that
the age parameter isn’t used.) You can use the urlencode method of the urllib module to create this kind
of URL query:

>>> urllib.urlencode({'name': 'Gumby', 'age': '42'})
'age=42&name=Gumby'

You can, of course, use this strategy in your own programs, together with urllib, to create a screen
scraping program that can actually interact with a CGI script. However, if you’re writing both ends (that is, both
server and client side) of such a contraption, you would, most likely, be better off using some form of Web
service (as described later in this chapter).

Note that there are two main ways of getting information from a CGI script: the GET method and the POST
method. For the purposes of this chapter, the difference between the two isn’t really important (basically, GET is for
retrieving things, and encodes its query in the URL, while POST can be used for any kind of query, but encodes
the query a bit differently). For more information about GET and POST, see the forms tutorials in the next
section.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 327

A Simple Form
Now you have the tools for handling a user request; it’s time to create a form that the user can
submit. That form can be a separate page, but I’ll just put it all in the same script.

To find out more about writing HTML forms (or HTML in general), you should perhaps get
a good book on HTML (your local bookstore probably has several). You can also find plenty of
information on the subject online. Here are some resources:

• http://www.webreference.com/htmlform

• http://www.htmlhelp.com/faq/html/forms.html

• http://www.cs.tut.fi/~jkorpela/forms

• http://www.htmlgoodies.com/tutors/fm.html

Also, if you find some page that you think looks like a good example for what you’d like to
do, you can inspect its source in your browser by choosing View Source or something similar
(depending on which browser you have) from one of the menus.

Let’s return to our script. An extended version can be found in Listing 15-7. In the begin-
ning, the CGI parameter name is retrieved, as before, with the default 'world'. If you just open
the script in your browser without submitting anything, the default is used.

Then, a simple HTML page is printed, containing name as a part of the headline. In addition,
this page contains an HTML form whose action attribute is set to the name of the script itself
(simple3.cgi). That means that if the form is submitted, you are taken back to the same script.
The only input element in the form is a text field called name. Thus, if you submit the field with
a new name, the headline should change because the name parameter now has a value.

Listing 15-7. A Greeting Script with an HTML Form (simple3.cgi)

#!/usr/bin/env python

import cgi
form = cgi.FieldStorage()

name = form.getvalue('name', 'world')

print """Content-type: text/html

<html>
 <head>
 <title>Greeting Page</title>
 </head>
 <body>
 <h1>Hello, %s!</h1>

328 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

 <form action='simple3.cgi'>
 Change name <input type='text' name='name' />
 <input type='submit' />
 </form>
 </body>
</html>
""" % name

Figure 15-2 shows the result of accessing the script in Listing 15-7 through a Web server.

Figure 15-2. The result of executing the CGI script in Listing 15-7

One Step Up: mod_python
If you like CGI, you will probably love mod_python. It’s an extension (module) for the Apache
Web server, and you can get it from the mod_python Web site, http://modpython.org. It makes
the Python interpreter directly available as a part of Apache, which makes a whole host of
different cool stuff possible. At the core, it gives you the ability to write Apache handlers in
Python, as opposed to in C, which is the norm. The mod_python handler framework gives you
access to a rich API, uncovering Apache internals and more.

In addition to the basic functionality, however, it comes with several handlers that can
make Web development a more pleasant task. There is the CGI handler, which lets you run CGI
scripts using the mod_python interpreter, considerably speeding up their execution; there is
the PSP handler, which lets you mix HTML and Python code to create executable Web pages, or
Python Server Pages; and there is the publisher handler, which lets you call Python functions
using URLs. In this section, I will focus on these three standard handlers; if you want to write
your own custom handlers, you should check out the mod_python documentation.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 329

Installing
Installing mod_python and getting it to work is, perhaps, a bit more difficult than doing so for
many of the other packages I’ve discussed so far. If nothing else, you have to make it cooperate
with Apache. So, if you plan to install mod_python yourself, you should either use some form
of package manager system (which will install it automatically) or make sure you know a bit
about running and maintaining the Apache Web server. (You can find more information about
Apache at http://httpd.apache.org.) If you’re lucky, of course, you may already have access to
a machine where mod_python is installed; if you’re uncertain, just try and see. (And then you
could bug your ISP or administrator to install it for you . . .)

If you do want to install it yourself, you can get the information you need in the mod_python
documentation, available online or for download at the mod_python Web site (http://
modpython.org). You can probably also get some assistance on the mod_python mailing list
(with subscription available from the same Web site). The process is slightly different depending
on whether you use UNIX or Windows.

Installing on UNIX

Assuming you have already compiled your Apache Web server (version 2.0.40 or newer—or use
an older version of mod_python) and you have the Apache source code available, here are the
highlights of compiling and installing mod_python.

First, download the mod_python source code. Unpack the archive and enter the directory.
Then, run the configure script of mod_python:

$./configure --with-apxs=/usr/local/apache/bin/apxs

(Modify the path to the apxs program if this is not where it is found; on my Gentoo system, for
example, I would use /usr/sbin/apxs2. Or, rather, I would install mod_python automatically
with the Portage package system, but that’s beside the point.)

Make a note of any useful messages, such as any messages about LoadModule.
Once this configuration is done, compile everything:

$ make

Once everything has been compiled, install mod_python:

$ make install

Installing on Windows

At the time of writing, the binary version of mod_python for Windows requires Python version 2.3.
You cannot use version 2.4. Download the mod_python installer from http://www.apache.org/
dist/httpd/modpython/win/ and double-click it. The installation is straightforward and will
take you through the steps of finding your Python and Apache installations.

You may get an error at the end of the process if you did not install Tcl/Tk with Python,
though the installer tells you how to finish the install manually. To do this, copy
mod_python_so.pyd from Python’s Lib\site-packages folder to the modules directory under
your Apache root folder.

330 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

Configuring Apache

Assuming everything went well (if not, check out the sources of information given earlier), you
now have to configure Apache to use mod_python. Find the Apache configuration file that is
used for specifying modules; it is usually called httpd.conf or apache.conf. Add the line that
corresponds to your operating system:

UNIX
LoadModule python_module libexec/mod_python.so

Windows
LoadModule python_module modules/mod_python.so

There may be slight variations in how to write this (for example, the exact path to
mod_python.so), though the correct version for UNIX should have been reported as a result
of running configure, earlier.

Now Apache knows where to find mod_python, but it has no reason to use it: You need to
tell it when to do so. To do that, you must add some lines to your Apache configuration, either
in some main configuration file (possibly commonapache2.conf, depending on your installation), or
in a file called .htaccess in the directory where you place your scripts for Web access. (The
latter option is only available if it has been allowed in the main configuration of the server
using the AllowOverride directive.) In the following, I assume that you’re using the .htaccess
method; otherwise, you have to wrap the directives like this (remember to use quotes around
the path if you are a Windows user):

<Directory /path/to/your/directory>
 (Add the directives here)
</Directory>

The specific directives to use are described in the following sections.

CGI Handler
The CGI handler simulates the environment your program runs in when you actually use CGI.
So you’re really using mod_python to run your program, but you can still (mostly) write it as if
it were a CGI script, using the cgi and cgitb modules, for example. (There are some limitations;
see the documentation for details.)

The main reason for using the CGI handler as opposed to plain CGI is performance. According
to a simple test in the mod_python documentation, you can increase your performance by
about one order of magnitude (a factor of about 10) or even more. The publisher (described
later) is faster than this, and writing your own handler is even faster, possibly tripling the speed
of the CGI handler. If you only want speed, the CGI handler may be an easy option. If you’re
writing new code, though, and want some extra functionality and flexibility, using one of the
other solutions (described in the following sections) is probably a better idea—the CGI handler
doesn’t really tap into the great potential of mod_python, and is best used with legacy code.

Anyway, to get the CGI show on the road, put the following in an .htaccess file in the direc-
tory where you keep your CGI scripts:

SetHandler mod_python
PythonHandler mod_python.cgihandler

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 331

For debugging information (which can be useful when something goes wrong, as it usually
will), you can add the following:

PythonDebug On

You should remove this directive when you’re done developing; there’s no point in exposing
the innards of your program to the (potentially malevolent) public.

Once you’ve set things up properly, you should be able to run your CGI scripts just like before.

■Note In order to get this to work, you might need to give your script a .py ending, even if you access it
with a URL ending in .cgi. mod_python converts the .cgi to a .py when it looks for a file to fulfill the request.

PSP
If you’ve used PHP (the PHP: Hypertext Preprocessor, originally known as Personal Home
Page), Microsoft ASP (Active Server Pages), JSP (JavaServer Pages), or something similar, the
concepts underlying PSP, or Python Server Pages, should be familiar. PSP documents are a mix
of HTML (or, for that matter, some other form of document) and Python code, with the Python
code enclosed in special-purpose tags. Any HTML (or other plain data) will be converted to
calls to an output function.

Setting Apache up to serve your PSP pages is as simple as putting the following in your
.htaccess file:

AddHandler mod_python .psp
PythonHandler mod_python.psp

This will treat files with the .psp file extension as PSP files.

■Caution While developing your PSP pages, using the directive PythonDebug On can be useful. You
should not, though, keep it on when the system is used for real, because any error in the PSP page will result
in an exception traceback including the source code being served to the user. Letting a potentially hostile user
see the source code of your program is something that should not be done lightly. If you publish the code
deliberately, others may help you find security flaws, and this can definitely be one of the strong sides to open
source software development. However, simply letting users glimpse your code through error messages is
probably not useful, and potentially a security risk.

There are two main sets of PSP tags: one set for statements, another for expressions. The
values of expressions in expression tags are directly put into the output document. Listing 15-8 is a
simple PSP example, which first performs some setup code (statements) and then outputs
some random data as part of the Web page, using an expression tag.

332 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

Listing 15-8. A Slightly Stochastic PSP Example

<%
from random import choice
adjectives = ['beautiful', 'cruel']
%>
<html>
 <head>
 <title>Hello</title>
 </head>
 <body>
 <p>Hello, <%=choice(adjectives)%> world. My name is Mr. Gumby.</p>
 </body>
</html>

You can mix plain output, statements, and expressions in any way you like. You can write
comments (that will not be part of the output) <%- like this -%>. There is really very little to
PSP programming beyond these basics. You need to be aware of one issue, though: If code in a
statement tag starts an indented block, the block will persist, with the following HTML being
put inside the block. One way to close such a block is to insert a comment, as in the following:

A <%
for i in range(3):
%> merry, <%
End the for loop
%> merry christmas time.

In general, if you’ve used PHP or JSP or the like, you will probably notice that PSP is more
picky about newlines and indentation; this is, of course, a feature inherited from Python itself.

There are many, many other systems that somewhat resemble mod_python’s PSP, and
even some that are almost identical (such as the Webware PSP system, available from http://
webwareforpython.org) or similarly named, but with a rather different syntax (such as the Spyce
PSP, available from http://spyce.sf.net). The Web development system Zope (see http://
zope.org) has its own template languages (such as ZPT). The rather innovative template system
ClearSilver (see http://clearsilver.net) has Python bindings, and could be an interesting
alternative for the curious. A visit to the Parnassus Web category (http://py.vaults.ca/apyllo.
py?i=127386987) or a Web search for “python template system” (or something similar) should
point you toward several other interesting systems.

The Publisher
This is where mod_python really comes into its own: It lets you write Python programs that
have a much more interesting environment than CGI scripts. To use the publisher handler, put
the following in your .htaccess file (again, optionally adding PythonDebug On while you’re
developing):

AddHandler mod_python .py
PythonHandler mod_python.publisher

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 333

This will run any file with a name ending in .py as a Python script, using the publisher
handler. The first thing to know about the publisher is that it exposes functions to the Web as if
they were documents. For example, if you have a script called script.py available from http://
example.com/script.py that contains a function called func, the URL http://example.com/
script.py/func will make the publisher first run the function (with a special request object as
the only parameter) and display whatever is returned as the document displayed to the user. As
is the custom with ordinary Web documents, the default “document” (that is, function) is
called index, so the URL http://example.com/script.py will call the function by that name. In
other words, something like the following is sufficient to make use of the publisher handler:

def index(req):
 return "Hello, world!"

The request object lets you access several pieces of information about the request received,
as well as setting custom HTTP headers and the like—consult the mod_python documentation
for instructions on how to use it. If you don’t care about it, you can just drop it, like this:

def index():
 return "Hello, world!"

The publisher actually checks how many arguments the given function takes as well as
what they’re called and supplies only what it can accept.

■Tip You can also do this sort of magic checking if you want to. It is not necessarily portable across Python
implementations (for example, to Jython), but if you’re sticking to CPython, you can use the inspect module
to poke at such corners of functions (and other objects) to see how many arguments they take and what the
arguments are called.

You can give your function more (or just other) arguments than the request object, too:

def greet(name='world'):
 return 'Hello, %s!' % name

Note that the dispatcher uses the names of the arguments, so when there is no argument
called req, you won’t receive the request object. You can now access this function and supply
it with an argument using a URL such as http://example.com/script.py/greet?name=Gumby.
The resulting Web page should now contain the greeting “Hello, Gumby!”.

Note that the default argument is quite useful; if the user (or the calling program) doesn’t
supply all parameters, it’s better to display a default page of some sort than to confront the user
with a rather noninformative “internal server error” message. Also, it would be problematic if
supplying extra arguments (not used by the function) would lead to an error condition; luckily,
it won’t. The dispatcher only uses the arguments it needs.

One nice thing about the dispatcher is that access control and authorization is very easy to
implement. The path given in the URL (after the script name) is actually a series of attribute
lookups; for each step in the series of lookups, mod_python also looks for the attributes
__auth__ and __access__ in the same object (or module) as the attribute itself. If you have

334 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

defined the __auth__ attribute, and it is callable (for example, a function or method), the user
is queried for a user name and password, and __auth__ is called with the request object, the
user name, and the password. If the return value is true, the user is authenticated. If __auth__
is a dictionary, the user name will be looked up, and the password will be matched against the
corresponding key. The __auth__ attribute can also be some constant value; if it is false, the
user is never authorized. (You can use the __auth_realm__ attribute to give the realm name,
usually used in the login query dialog box.) Once a user has been authenticated, it is time to
check whether he or she should be granted access to a given object (for example, the module or
script itself); for this you use the __access__ attribute. If you have defined __access__ and it is
callable, it is called with the request object and the user name, and, again, the truth value returned
determines whether the user is granted access (with a true value granting access). If __access__
is a list, then the user is granted access if the user name is found in the list. Just like __auth__,
__access__ can be a Boolean constant.

Listing 15-9 gives a simple example of a script with authentication and access control.

Listing 15-9. Simple Authentication with the mod_python Publisher

from sha import sha

__auth_realm__ = "A simple test"

def __auth__(req, user, pswd):
 return user == "gumby" and sha(pswd).hexdigest() == \
 '17a15a277d43d3d9514ff731a7b5fa92dfd37aff'

def __access__(req, user):
 return True

def index(req, name="world"):
 return "<html>Hello, %s!</html>" % name

Note that the script in Listing 15-9 uses the sha module to avoid storing the password
(which is “goop”, by the way) in plain text. Instead, a digest of the correct password is compared
with a digest of the password supplied by the user. This doesn’t give a great increase in security,
but it’s better than nothing. The __access__ function doesn’t really do anything useful here. In
a real application, you might have a common authentication function, to check that the users
really are who they claim to be (that is, verify that the passwords fit the user names), and then
use specialized __access__ functions (or lists) in different objects to restrict access to a subset
of the users. For more information about how objects are published, see the section “The
Publishing Algorithm” in the mod_python documentation.

■Note The __auth__ mechanism uses HTTP authentication, as opposed to the cookie-based authentication
used by some systems.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 335

Web Services: Scraping Done Right
Web services are a bit like computer-friendly Web pages. They are based on standards and
protocols that enable programs to exchange information across the network, usually with one
program, the client or service requester, asking for some information or service, and the other
program, the server or service provider, providing this information or service. Yeah, I know.
Glaringly obvious stuff. And it also seems very similar to the network programming discussed
in Chapter 14. There are differences, though . . .

Web services often work on a rather high level of abstraction. They use HTTP (the “Web
protocol”) as the underlying protocol; on top of this, they use more content-oriented proto-
cols, for example, using some XML format to encode requests and responses. This means that
a Web server can be the platform for Web services. As the title of this section indicates, it’s Web
scraping taken to another level; one could see the Web service as a dynamic Web page designed for
a computerized client, rather than for human consumption.

There are standards for Web services that go really, really far in capturing all kinds of
complexity, but you can get a lot done with utter simplicity as well. In this section, I discuss two
simple Web service protocols: I start with the simplest, RSS, which you could even argue is so
simple that it isn’t really a Web service protocol at all. Then I show you how to use XML-RPC
from the client side; the server side is dealt with in more detail in Chapter 27. There are several
other standards you might want to check out. For example, SOAP is, in some sense, XML-RPC
on steroids, and WSDL is a format for describing Web services formally. A good Web search
engine will, as always, be your friend here.

RSS
RSS, which stands for either Rich Site Summary, RDF Site Summary, or Really Simple Syndication
(depending on the version number), is, in its simplest form, a format for listing news items in
XML. What makes RSS documents (or feeds) more of a service than simply a static document is
that they’re expected to be updated regularly (or irregularly). They may even be computed
dynamically, representing, for example, the most recent additions to a Web log or the like.
There are plenty of RSS readers out there, and because the RSS format is so easy to deal with,
it’s easy to find new applications for it. For example, some browsers (such as Mozilla Firefox)
will let you bookmark an RSS feed, and will then give you a dynamic bookmark submenu with
the individual news items as menu items. Some people are even using RSS feeds to “broadcast”
sound or video files (called podcasting).

One slightly confusing part of the RSS picture is that versions 0.9x and 2.0.x, now mainly
called Really Simple Syndication (with 0.9x originally called Rich Site Summary), are sort of
compatible with each other, but completely incompatible with RSS 1.0. There are also other
formats for this sort of news feeds and site syndication, such as the more recent Atom (see, for
example, http://ietf.org/html.charters/atompub-charter.html). The problem is that if you
want to write a client program that handles feeds from several sites, you must be prepared to
parse several different formats; you may even have to parse HTML fragments found in the
messages themselves. In this section, I’ll use a tiny subset of RSS 2.0. Listing 15-10 shows an
example RSS file; for full specifications of recent RSS 2.0 versions, see http://blogs.law.harvard.
edu/tech/rss. For a specification of RSS 1.0, see http://web.resource.org/rss/1.0.

336 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

Listing 15-10. A Simple RSS 2.0 File

<?xml version="1.0"?>
<rss version="2.0">
 <channel>
 <title>Example Top Stories</title>
 <link>http://www.example.com<link>
 <description>
 Example News is a top notch provider of meaningless news items.
 </description>
 <item>
 <title>Interesting stuff</title>
 <description>Something really interesting happened today</description>
 <link>http://www.example.com/newsitem1.html</link>
 </item>
 <item>
 <title>More interesting stuff</title>
 <description>Then something even more interesting happened</description>
 <link>http://www.example.com/newsitem2.html</link>
 </item>
 </channel>
</rss>

The RSS 2.0 standard specifies a few mandatory elements, and many optional ones. You
can count on an RSS 2.0 channel element having a title, link, and description. They can
contain (among other things) zero or more item elements, which, at the very least, have either
a title or a description. If you’re writing a program to deal with a specific feed, a good idea
might be to simply find out which elements it provides.

Another thing making the parsing a bit challenging is the sad fact that even though RSS is
supposed to be valid XML, and therefore easy to parse, chances are you will come across ill-
formed RSS feeds. If nothing else, the news messages themselves may contain such illegalities
as unescaped ampersands (&) or the like.

There aren’t really (at the time of writing) any obvious standard RSS modules for Python
that will handle these difficulties, so you’re more or less back to screen scraping (for now, at
least). Luckily, the handy Beautiful Soup parser can deal with XML as well as HTML, and it
won’t complain about a bit of sloppiness on the part of the RSS feed. To round off this little
introduction to RSS, Listing 15-11 is an example program that will get the top stories from
Wired News (http://wired.com). Note that it uses the class BeautifulStoneSoup, rather than
BeautifulSoup, to parse the RSS feed; this class can deal with XML in general, while BeautifulSoup
is targeted specifically at HTML. (In order to use the BeautifulStoneSoup class, you will, of
course, need to download BeautifulSoup, as discussed earlier in this chapter.) The program
also demonstrates how you can use the wrap function from the standard Python module
textwrap to make text fit nicely on the screen.

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 337

■Tip You can find an RSS feed of Python news at http://python.org/channews.rdf. This feed is in
RSS 1.0 format, though.

Listing 15-11. Getting the Wired News

from BeautifulSoup import BeautifulStoneSoup
from urllib import urlopen
from textwrap import wrap

URL = 'http://www.wired.com/news/feeds/rss2'

soup = BeautifulStoneSoup(urlopen(URL).read())

for item in soup('item'):
 print item.title.string
 print '-'*len(item.title.string)
 print '\n'.join(wrap(item.description.string))
 print '[%s]\n' % item.link.string

XML-RPC
RPC stands for Remote Procedure Call, and XML is a language you’ve already encountered a
few times by now. The XML-RPC Web site at http://www.xmlrpc.com is a good source of infor-
mation. The standard library module xmlrpclib module is used to connect to XML-RPC servers,
and SimpleXMLRPCServer is a class you can use to write such servers. In Chapter 27 you will learn
more about the server stuff—here I will only look at the client side.

■Caution The version of SimpleXMLRPCServer that ships with Python 2.2 contains a serious flaw in its
handling of exceptions. If you use this version, the programs in this chapter and Chapters 27 and 28 may
appear to work, but in fact they won’t be working correctly. Either use a newer version of Python (for example,
version 2.3) or download a new version of SimpleXMLRPCServer.py from http://www.sweetapp.com/
xmlrpc, and replace your current version with the downloaded one. Also, in Python 2.2, 2.3, and 2.4 the
XML-RPC code contains some vulnerabilities; see http://www.python.org/security/PSF-2005-001
for information on this, as well as fixes for the problem. The easiest solution is to use either version 2.3.5 or
newer in the 2.3 series, or 2.4.1 or newer in the 2.4 series, as the problems have been fixed there.

To show you how easy xmlrpclib is to use, here is an example that connects to the XML-
RPC server at The Covers Project (http://coversproject.com), a database of cover songs:

338 C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B

>>> from xmlrpclib import ServerProxy
>>> server = ServerProxy('http://coversproject.com/RPC.php')
>>> covers = server.covers.Covered('Monty Python')
>>> for cover in covers:
... if cover['song'] == 'Brave Sir Robin':
... print cover['artist']
...
Happy Rhodes

The ServerProxy object looks like a normal object with various methods you can call, but
in fact, whenever you call one of its methods, it sends a request to the server, which responds
to the requests and returns an answer. So, in a way, you’re calling the method covers.Covered
on the server itself. Network programming could hardly be any easier than this. (For more
information about the XML-RPC methods supplied by The Covers Project, see http://
coversproject.com/about/xmlrpc.html.)

■Note XML-RPC procedure (function/method) names may contain dots, as in the preceding example. The
name covers.Covered does not imply the existence of an object named covers on the server—the dots
are only used to structure the names.

Here is a slightly more complicated example, which uses the news service Meerkat to find
some articles about Python:

>>> from xmlrpclib import ServerProxy
>>> query = {'search': 'Python', 'num_items': 5}
>>> s = ServerProxy('http://www.oreillynet.com/meerkat/xml-rpc/server.php')
>>> items = s.meerkat.getItems(query)
>>> [i['title'] for i in items]
['MacHack: Meet Dylan the Yoot', 'Hap Debugger', 'Project and proposal for
integrating validation with processing pipelines', 'Spam Check', 'ZCoMIX 1.0
Final Released']
>>> items[0].keys()['link', 'description', 'title']
>>> items[3]['link']
'http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/134945'

As you can see, the method meerkat.getItems is called with a mapping parameter that
contains various arguments (in this case a search query and the number of items to be returned)
and returns a list of mappings, each of which has a title, a description, and a link. Actually,
there is a lot more to Meerkat than this—if you want to experiment, take a look at the Meerkat
Web site (http://www.oreillynet.com/meerkat) or one of the many online tutorials about
the Meerkat XML-RPC API (for example, http://oreillynet.com/pub/a/rss/2000/11/14/
meerkat_xmlrpc.html).

C H A P T E R 1 5 ■ P Y T H O N A N D T H E W E B 339

A Quick Summary
As always, new topics were covered—and here they are again:

Screen scraping. This is the practice of downloading Web pages automatically, and
extracting information from them. The Tidy program and its library version are useful
tools for fixing ill-formed HTML before using an HTML parser. Another option is to use
Beautiful Soup, which is very forgiving of messy input.

CGI. The Common Gateway Interface is a way of creating dynamic Web pages, by making
a Web server run and communicate with your programs and display the results. The cgi
and cgitb modules are useful for writing CGI scripts. CGI scripts are usually invoked from
HTML forms.

mod_python. The mod_python handler framework makes it possible to write Apache
handlers in Python. It includes three useful standard handlers: the CGI handler, the PSP
handler, and the publisher handler.

Web services. Web services are to programs what (dynamic) Web pages are to people. You
may see them as a way of making it possible to do network programming at a higher level
of abstraction. Two example Web service standards discussed in this chapter are RSS and
XML-RPC.

New Functions in This Chapter

What Now?
I’m sure you’ve tested the programs you’ve written so far by running them. In the next chapter,
you will learn how you can really test them—thoroughly and methodically. Maybe even
obsessively, if you’re lucky . . .

Function Description

cgitb.enable() Enables tracebacks in CGI scripts

341

■ ■ ■

C H A P T E R 1 6

Testing, 1-2-3

How do you know that your program works? Can you rely on yourself to write flawless code
all the time? Meaning no disrespect, I would guess that’s unlikely. It’s quite easy to write correct
code in Python most of the time, certainly, but chances are you will have bugs. Debugging is a
fact of life for programmers—an integral part of the craft of programming. However, the only
way to get started debugging is to run your program. Right? And simply running your program
might not be enough; if you have written a program that processes files in some way, for example,
you will need some files to run it on. Or if you have written a utility library with mathematical
functions, you will have to supply those functions with parameters in order to get your code to run.

Programmers do this kind of thing all the time. In compiled languages, the cycle goes
something like “edit, compile, run,” around and around. In some cases, there may be problems
even getting the program to compile, so the programmer simply switches between editing and
compiling. In Python, the compilation step isn’t there—you simply edit and run. Running your
program is what testing is all about.

In this chapter, I discuss the basics of testing. I give you some notes on how to let testing
become one of your programming habits, and show you some useful tools for writing your
tests. In addition to the testing and profiling tools of the standard library, I show you how to use
the code analyzers PyChecker and PyLint.

For more on programming practice and philosophy, see Chapter 19. There I also mention
logging, which is somewhat related to testing.

Test First, Code Later
To plan for change and flexibility, which is crucial if your code is going to survive even to the
end of your own development process, it’s important to set up tests for the various parts of
your program (so-called unit tests). It’s also a very practical and pragmatic part of designing
your application. Rather than the intuitive “code a little, test a little” practice, the Extreme
Programming crowd (a relatively new movement in software design and development) has
introduced the highly useful, but somewhat counterintuitive, dictum “test a little, code a little.”
In other words, test first and code later. (This is also known as test-driven programming.) While
this may be unfamiliar at first, it can have many advantages, and it does grow on you over time.
Eventually, once you’ve used test-driven programming for a while, writing code without having
tests in place will seem really backwards.

342 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

Precise Requirement Specification
When developing a piece of software, you must first know what problem the software will
solve—what objectives it will meet. You can clarify your goals for the program by writing a
requirement specification, a document (or just some quick notes) describing requirements the
program must satisfy. It is then easy to check at some later time whether the requirements are
indeed satisfied. But many programmers dislike writing reports and in general prefer to have
their computer do as much of their work as possible. Good news: You can specify the require-
ments in Python, and have the interpreter check whether they are satisfied!

■Note There are many types of requirements, including such vague concepts as client satisfaction. In this
section, I focus on functional requirements—that is, what is required of the program’s functionality.

The idea is to start by writing a test program, and then write a program that passes the tests.
The test program is your requirement specification and helps you stick to those requirements
while developing the program.

Let’s take a simple example: You want to write a module with a single function that will
compute the area of a rectangle with a given height and a given width. Before you start coding,
you write a unit test with some examples for which you know the answers. Your test program
might look like the one in Listing 16-1.

Listing 16-1. A Simple Test Program

from area import rect_area
height = 3
width = 4
correct_answer = 12
answer = rect_area(height, width)
if answer == correct_answer:
 print 'Test passed '
else:
 print 'Test failed '

In this example, I call the function rect_area (which I haven’t written yet) on the height 3 and
width 4 and compare the answer with the correct one, which is 12. Of course, testing only one
case like this won’t give you much confidence in the correctness of the code. A real test program
would probably be a lot more thorough. Anyway, if you carelessly implement rect_area (in the
file area.py) as follows, and try to run the test program, you would get an error message:

def rect_area(height, width):
 return height * height # This is wrong...

You could then examine the code to see what was wrong, and replace the returned expression
with height * width.

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 343

Writing a test before you write your code isn’t just a preparation for finding bugs; it’s much
more profound than that. It’s a preparation for seeing whether your code works at all. It’s a bit
like the old Zen koan: Does a tree falling in the forest make a sound if no one is there to hear it?
Well, of course it does (sorry, Zen monks), but the sound doesn’t have any impact on you or
anyone else. It’s a bit similar with the code. Until you test it, does it actually do anything?
Philosophy aside, it can be useful to adopt the attitude that a feature doesn’t really exist (or isn’t
really a feature) until you have a test for it. Then you can clearly demonstrate that it’s there, and
is doing what it’s supposed to. This isn’t only useful while developing the program initially, but
also when extending and maintaining later on...

Planning for Change
In addition to helping a great deal as you write the program, automated tests help you avoid
accumulating errors when you introduce changes. As discussed in Chapter 19, you should be
prepared to change your code rather than clinging frantically to what you’ve got; but change
has its dangers. When you change some piece of your code, you very often introduce some
unforeseen bug. If you have designed your program well (with lots of abstraction and encapsu-
lation), the effects of a change should be local, and only affect a small piece of the code. That
means that debugging is easier if you spot the bug.

The point is that if you don’t have a thorough set of tests handy, you may not even discover
that you have introduced a bug until later, when you no longer know how the error got intro-
duced. And without a good test set, it is much more difficult to pinpoint exactly what is wrong.
You can’t roll with the punches unless you see them coming. One way of making sure that you
get good test coverage (that is, that your tests exercise much, if not most, of your code) is, in fact,
to follow the tenets of test-driven programming. If you make sure that you have written the
tests before you write the function, you can be certain that every function is tested.

CODE COVERAGE

The concept of coverage is an important part of testing lore. When you run your tests, chances are you won’t
run all parts of your code, even though that would be the ideal situation. (Actually, the ideal situation would be
to run through every possible state of your program, using every possible input, but that’s really not going to
happen.) One of the goals of a good test suite is to get good coverage, and one way of ensuring that is to use
a coverage tool, which measures the percent of your code that was actually run during the testing. At the time
of writing, there is no really standardized coverage tool for Python, but a Web search for something like “test
coverage python” should turn up a few options. One option is the (currently undocumented) program
trace.py that comes with the Python distribution. You can either run it as a program on the command line,
or you can import it as a module. For help on how to use it, you can either run the program with the --help
switch or import the module and execute help(trace) in the interpreter. At times one may feel overwhelmed
by the requirement to test everything extensively. Don’t worry so much about it to begin with. You don’t have
to test hundreds of combinations of inputs and state variables—at least not to begin with. The most important
part of test-driven programming is that you actually run your method (or function or script) repeatedly while
coding, to get continual feedback on how you’re doing. If you want to increase your confidence in the correctness of
the code (as well as the coverage), you can always add more tests later.

344 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

The 1-2-3 (and 4) of Testing
Before we get into the nitty-gritty of writing tests, here’s a breakdown of the test-driven devel-
opment process (or one variation of it):

1. Figure out the new feature you want. Possibly document it, and then write a test for it.

2. Write some skeleton code for the feature, so that your program runs without any syntax
errors or the like, but so that your test fails. It is important to see your test fail, so you are
sure that it actually can fail. If there is something wrong with the test, and it always suc-
ceeds no matter what (this has happened to me lots of times), you aren’t really testing
anything. This bears repeating: See your test fail before you try to make it succeed.

3. Write dummy code for your skeleton, just to appease the test. This doesn’t have to accu-
rately implement the functionality, it just has to make the test pass. This way, you can
have all your tests pass all the time when developing (except the first time you run the
test, remember?), even while implementing the functionality initially.

4. Now you rewrite (or refactor) the code so that it actually does what it’s supposed to, all
the while making sure that your test keeps succeeding.

You should keep your code in a healthy state when you leave it—don’t leave it with any
tests failing. (Well, that’s what they say. I find that I sometimes leave it with one test failing,
which is the point at which I’m currently working. This is really bad form if you’re developing
together with others, though. You should never check failing code into the common code
repository.)

Tools for Testing
You may think that writing lots of tests to make sure that every detail of your program works
correctly sounds like a chore. Well, I have good news for you: There is help in the standard
libraries (isn’t there always?). There are two brilliant modules available to automate the testing
process for you: unittest, a generic testing framework, and simpler module, doctest, which is
designed for checking documentation, but which is excellent for writing unit tests as well. Let’s
take a look at doctest, which is a great starting point.

doctest
Throughout this book, I use examples taken directly from the interactive interpreter. I find that
this is an effective way to show how things work, and when you have such an example, it’s easy
to test it for yourself. In fact, interactive interpreter sessions can be a useful form of documen-
tation to put in docstrings. For instance, let’s say I write a function for squaring a number, and
add an example to its docstring:

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 345

def square(x):
 '''
 Squares a number and returns the result.

 >>> square(2)
 4
 >>> square(3)
 9
 '''
 return x*x

As you can see, I’ve included some text in the docstring, too. What does this have to do
with testing? Let’s say the square function is defined in the module my_math (that is, a file called
my_math.py). Then you could add the following code at the bottom:

if __name__=='__main__':
 import doctest, my_math
 doctest.testmod(my_math)

That’s not a lot, is it? You simply import doctest and the my_math module itself, and then
run the testmod (for “test module”) function from doctest. What does this do? Let’s try it:

$ python my_math.py
$

Nothing seems to have happened, but that’s a good thing. The doctest.testmod function
reads all the docstrings of a module and seeks out any text that looks like an example from the
interactive interpreter; then it checks whether the example represents reality.

■Note If I were writing a real function here, I would (or should, according to the rules I laid down earlier)
first write the docstring, run the script with doctest to see the test fail, add a dummy version (for example
using if-statements to deal with the specific inputs in the docstring) so that the test succeeds, and then start
working on getting the implementation right. On the other hand, if you’re going to do full-out “test-first, code-
later” programming, the unittest framework (discussed later) might suit your needs better.

To get some more input, you can just give the –v switch (for verbose) to your script:

$ python my_math.py -v

This command would result in the following output:

Running my_math.__doc__
0 of 0 examples failed in my_math.__doc__
Running my_math.square.__doc__
Trying: square(2)
Expecting: 4
ok

346 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

Trying: square(3)
Expecting: 9
ok
0 of 2 examples failed in my_math.square.__doc__
1 items had no tests:
 test
1 items passed all tests:
 2 tests in my_math.square
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

As you can see, a lot happened behind the scenes. The testmod function checks both the
module docstring (which, as you can see, contains no tests) and the function docstring (which
contains two tests, both of which succeed).

With this in place, you can safely change your code. Let’s say that you want to use the
Python exponentiation operator instead of plain multiplication, and use x**2 instead of x*x.
You edit the code, but accidentally forget to enter the number 2, and end up with x**x. Try it,
and then run the script to test the code. What happens? This is the output you get:

Failure in example: square(3)
from line #5 of my_math.square
Expected: 9
Got: 27

1 items had failures:
 1 of 2 in my_math.square
Test Failed 1 failures.

So the bug was caught, and you get a very clear description of what is wrong. Fixing the
problem shouldn’t be difficult now.

■Caution Don’t trust your tests blindly, and be sure to test enough cases. As you can see, the test using
square(2) does not catch the bug because for x==2, x**2 and x**x are the same thing!

For more information about the doctest module, you should again check out the library
reference (http://python.org/doc/lib/module-doctest.html).

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 347

unittest
While doctest is very easy to use, unittest (based on the popular test framework JUnit, for
Java) is more flexible and powerful. It may have a steeper learning curve than doctest, but I
suggest that you take a look at it because it makes it possible to write very large and thorough
test sets in a more structured manner. The module is described in the library reference (http://
python.org/doc/lib/module-unittest.html).

I will only give you a gentle introduction here—there are features in unittest you probably
won’t need for most of your testing. Again, let’s take a look at a simple example. You’re going to
write a module called my_math containing a function for calculating products, called product.
So where do we begin? With a test, of course (in a file called test_my_math.py), using the TestCase
class from the unittest module (see Listing 16-2).

Listing 16-2. A Simple Test Using the unittest Framework

import unittest, my_math

class ProductTestCase(unittest.TestCase):

 def testIntegers(self):
 for x in xrange(-10, 10):
 for y in xrange(-10, 10):
 p = my_math.product(x, y)
 self.failUnless(p == x*y, 'Integer multiplication failed')

 def testFloats(self):
 for x in xrange(-10, 10):
 for y in xrange(-10, 10):
 x = x/10.0
 y = y/10.0
 p = my_math.product(x, y)
 self.failUnless(p == x*y, 'Float multiplication failed')

if __name__ == '__main__': unittest.main()

The function unittest.main takes care of running the tests for you. It will instantiate all
subclasses of TestCase and run all methods whose names start with test.

■Tip If you define methods called startUp and tearDown, they will be executed before and after each of
the test methods, so you can use them to provide common initialization and cleanup code for all the tests, a
so-called test fixture.

348 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

Running this test script will, of course, simply give us an exception about the module
my_math not existing. Methods such as failUnless check a condition to determine whether the
given test succeeds or fails. (There are many others, such as failIf, failUnlessEqual, failIfEqual,
and others. See the Table 16-1 for a brief overview, or the Python Library Reference, http://
python.org/doc/lib/testcase-objects.html, for more information.)

The unittest module distinguishes between errors, where an exception is raised, and fail-
ures, which results from calls to failUnless and the like; the next step is to write skeleton code,
so we don’t get errors—only failures. This simply means to create a module called my_math (that
is, a file called my_math.py) containing the following:

def product(x, y):
 pass

All filler, no fun. If you run the test now, you should get two FAIL messages, like this:

Table 16-1. Some Useful TestCase Methods

Method Description

assert_(expr[, msg]) Fail if the expression is false, optionally
giving a message.

failUnless(expr[, msg]) Same as assert_.

assertEqual(x, y[, msg]) Fail if two values are different, printing
both values in traceback.

failUnlessEqual(x, y[, msg]) Same as assertEqual.

assertNotEqual(x, y[, msg]) The opposite of assertEqual.

failIfEqual(x, y[, msg]) The same as assertNotEqual.

assertAlmostEqual(x, y[, places[, msg]]) Similar to assertEqual, but with some
leeway for floats.

failUnlessAlmostEqual(x, y[, places[, msg]]) The same as assertAlmostEqual.

assertNotAlmostEqual(x, y[, places[, msg]]) The opposite of assertAlmostEqual.

failIfAlmostEqual(x, y[, msg]) The same as assertNotAlmostEqual.

assertRaises(exc, callable, ...) Fail unless the callable raises exc when
called (with optional args).

failUnlessRaises(exc, callable, ...) Same as assertRaises.

failIf(expr[, msg]) Opposite of assert_.

fail([msg]) Unconditional failure—with an optional
message, as other methods.

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 349

FF
==
FAIL: testFloats (__main__.ProductTestCase)
--
Traceback (most recent call last):
 File "test_my_math.py", line 17, in testFloats
 self.failUnless(p == x*y, 'Float multiplication failed')
AssertionError: Float multiplication failed

==
FAIL: testIntegers (__main__.ProductTestCase)
--
Traceback (most recent call last):
 File "test_my_math.py", line 9, in testIntegers
 self.failUnless(p == x*y, 'Integer multiplication failed')
AssertionError: Integer multiplication failed

--
Ran 2 tests in 0.001s

FAILED (failures=2)

This was all expected, so don’t worry too much. Now, at least, you know that the tests are
really linked to the code: The code was wrong, and the tests failed. Wonderful. Next step: Make
it work. In this case, there isn’t much to it, of course:

def product(x, y):
 return x * y

Now the output is simply

..
--
Ran 2 tests in 0.015s

OK

The two dots at the top are the tests. If you look closely at the jumbled output from the
failed version, you’ll see that there were two characters on the top there as well: two Fs, indi-
cating two failures.

Just for fun, change the product function so that it fails for the specific parameters 7 and 9:

350 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

def product(x, y):
 if x == 7 and y == 9:
 return 'An insidious bug has surfaced!'
 else:
 return x * y

If you run the test script again, you should get a single failure:

.F
==
FAIL: testIntegers (__main__.ProductTestCase)
--
Traceback (most recent call last):
 File "test_my_math.py", line 9, in testIntegers
 self.failUnless(p == x*y, 'Integer multiplication failed')
AssertionError: Integer multiplication failed

--
Ran 2 tests in 0.005s

FAILED (failures=1)

■Tip There is also a GUI for unittest. See the PyUnit (another name for unittest) Web page,
http://pyunit.sf.net, for more information.

Beyond Unit Tests
Tests are clearly important, and for any somewhat complex project they are absolutely vital.
Even if you don’t want to bother with structured suites of unit tests, you really have to have
some way of running your program to see whether it works, and having this capability in place
before you do any significant amount of coding can save you a bundle of work (and pain) later
on. There are other ways of probulating (what, you don’t watch Futurama?) your program, and
before ending this chapter I’ll show you a couple of quite useful tools for doing just that: source
code checking and profiling. The first is a way of looking for common mistakes or problems in
your code (a bit like what compilers can do for statically typed languages, but going far beyond
that); the second is a way of finding out how fast your program really is. I discuss the topics in
this order to honor the good old rule, “Make it work, make it better, make it faster.” The unit
testing helped make it work; source code checking can help make it better; and, finally, profiling
can help make it faster.

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 351

PyChecker and PyLint
For quite some time, PyChecker (http://pychecker.sf.net) was the only tool for checking Python
source code, looking for mistakes such as supplying arguments that won’t work with a given
function and so forth. (All right, there was tabnanny, in the standard library, but that isn’t all
that powerful... It just checks your indentation.) Then along came PyLint (http://logilab.org/
projects/pylint), which supports most of the features of PyChecker, and quite a few more
(such as whether your variable names fit a given naming convention, whether you’re adhering
to your own coding standards, and the like).

Installing the tools is simple. They are both available from several package manager systems
(such as Debian APT and Gentoo Portage), and may also be downloaded directly from their
respective Web sites. (PyLint requires that you download a package called logilab-common as
well, available from the same Web site.) You install using Distutils, with the standard command:

python setup.py install

Once this is done, the tools should be available as command-line scripts (pychecker and
pylint for PyChecker and PyLint, respectively) and as Python modules (with the same names).
(Remember that you have to install the Logilab Common libraries to get PyLint to work. You
install them the same way as PyLint.)

■Note In Windows, the two tools use the batch files pychecker.bat and pylint.bat as command-line
tools. You may have to add these to your PATH environment variable to have the pychecker and pylint
commands available on the command line.

To check files with PyChecker, you run the script with the file names as arguments, like this:

pychecker file1.py file2.py ...

With PyLint, you use the module (or package) names:

pychecker module

You can get more information about both tools by running them with the -h command-
line switch. When you run either of these commands, you will probably get quite a bit of output
(most likely more output from pylint than from pychecker). Both tools are quite configurable
with respect to which warnings you want to get (or suppress); see their respective documenta-
tion for more information.

Before leaving the checkers, let’s see how you can combine them with unit tests. After all,
it would be very pleasant to have them (or just one of them) run automatically as a test in your
test suite, and to have them silently succeed if nothing is wrong. Then you could actually have
a test suite that doesn’t just test functionality, but code quality as well.

352 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

Both PyChecker and PyLint can be imported as modules (pychecker.checker and
pylint.lint, respectively), but they aren’t really designed to be used programmatically. When
you import pychecker.checker, it will check the code that comes later (including imported
modules), printing warnings to standard output. The pylint.lint module has an undocumented
function called Run (takes command-line switches and argument as parameters), which is used
in the pylint script itself. This also prints out warnings rather than returning them in some
way. Instead of grappling with these issues, I suggest using them in the way they’re meant to
be used: as command-line tools. And the way of using command-line tools in Python is the
subprocess module (or one of its older relatives; see the Library Reference for more informa-
tion). Listing 16-3 is an example of the earlier test script, now with two code checking tests.

Listing 16-3. Calling External Checkers Using the subprocess Module

import unittest, my_math
from subprocess import Popen, PIPE

class ProductTestCase(unittest.TestCase):

 # Insert previous tests here

 def testWithPyChecker(self):
 cmd = 'pychecker', '-Q', my_math.__file__.rstrip('c')
 pychecker = Popen(cmd, stdout=PIPE, stderr=PIPE)
 self.assertEqual(pychecker.stdout.read(), '')

 def testWithPyLint(self):
 cmd = 'pylint', '-rn', 'my_math'
 pylint = Popen(cmd, stdout=PIPE, stderr=PIPE)
 self.assertEqual(pylint.stdout.read(), '')

if __name__ == '__main__': unittest.main()

I’ve given some command-line switches to the checker programs, to avoid extraneous
output that would interfere with the tests: For pychecker, I have supplied the -Q (quiet) switch
and for pylint I have supplied -rn (with n standing for “no”) to turn off reports, meaning that it
will only display warnings and errors. I have used assertEqual (instead of, for example, failIf)
in order to have the actual output read from the stdout attribute displayed in the failure messages
of unittest (this is, in fact, the main reason for using assertEqual instead of failUnless together
with == in general).

The pylint command runs directly with a module name supplied, so that’s pretty straight-
forward. To get pychecker to work properly, we need to get a filename. To get that, I’ve used the
__file__ property of the my_math module, rstrip’ing away any c that may be found at the end
of the file name (because the module may actually come from a .pyc file).

In order to appease PyLint (rather than configuring it to shut up about things such as short
variable names, missing revisions, and docstrings), I have rewritten the my_math module slightly:

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 353

"""
A simple math module.
"""
__revision__ = '0.1'

def product(factor1, factor2):
 'The product of two numbers'
 return factor1 * factor2

If you run the tests now, you should get no errors. Try to play around with the code and see
if you can get any of the checkers to report any errors while the functionality tests still work.
(Feel free to drop either PyChecker or PyLint—one is probably enough.) For example, try to
rename the parameters back to x and y, and PyLint should complain about short variable
names. Or add print 'Hello, world!' after the return statement, and both checkers, quite
reasonably, will complain (possibly giving different reasons for the complaint).

Profiling
Now that you’ve made your code work, and possibly made it better than the initial version, it
may be time to make it faster. It may. Then, again, it may not. There is one very important rule
(along with such principles as KISS = Keep It Small and Simple, or YAGNI = You Ain’t Gonna
Need It) that you should heed when tempted to fiddle with your code to speed it up:

Premature optimization is the root of all evil.

——Professor Sir Charles Anthony Richard Hoare, inventor of QuickSort

Another way of stating this, in the words of Ken Thompson, co-inventor of Unix, is “When
in doubt, use brute force.” In other words, don’t worry about fancy algorithms or clever optimi-
zation tricks if you don’t really, really need them. If the program is fast enough, chances are
that the value of clean, simple, understandable code is much higher than that of a slightly faster
program. After all, in a few months, faster hardware will probably be available anyway...

But if you do need to optimize your program, because it simply isn’t fast enough for your
requirements, then you absolutely ought to profile it before doing anything else. That is because it’s
really hard to guess where the bottlenecks are, unless your program is really simple. And if you
don’t know what’s slowing your program down, chances are you’ll be optimizing the wrong thing.

The standard library includes a nice profiler module called profile (and a faster drop-in C
version, called hotshot, and timeit, which is a simple way of timing small snippets of Python
code). Using the profiler is straightforward: Just call its run method with a string argument.

■Tip The timeit module isn’t really useful for detailed profiling, but it can be a nice tool when all you want
to do is figure out how much time a piece of code takes to execute. Trying to do this yourself can often lead
to inaccurate measurements (unless you know what you’re doing)—using timeit is usually a better choice
(unless you opt for a full profiling, of course). You can find more information about timeit in the Python
Library Reference (http://python.org/doc/lib/module-timeit.html).

354 C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3

>>> import profile
>>> from my_math import product
>>> profile.run('product(1, 2)')

■Note In some Linux distributions, it may be that you have to install a separate package in order to get the
profile module to work. If it works, fine. If not, you might want to check out the relevant documentation to
see if this is the problem.

This will give you a printout with information about how many times various functions
and methods were called and how much time was spent in the various functions. If you supply
a filename, for example, 'my_math.profile', as the second argument to run, the results will be
saved to a file. You can then later use the pstats module to examine the profile:

>>> import pstats
>>> p = pstats.Stats('my_math.profile')

Using this Stats object, you can examine the results programmatically. (For details on the
API, consult the standard library documentation.)

Now, if you’re really worried about the speed of your program, you could add a unit test
that profiles your program and enforces certain constraints (such as failing if the program takes
more than a second to finish). It might be a fun thing to do, but it’s not something I’d recom-
mend. Obsessive profiling can easily take your attention away from things that really matter,
such as clean, understandable code. If the program is really slow, you’ll notice that anyway,
because your tests will take forever to finish.

A Quick Summary
Here are the main topics covered in the chapter:

Test-driven programming. Basically: Test first, code later. Tests let you rewrite your code
with confidence, making your development and maintenance more flexible.

doctest and unittest. These are indispensible tools if you want to do unit testing in Python.
The doctest module is designed to check examples in docstrings, but can easily be used to
design test suites. For more flexibility and structure in your suites, the unittest framework
is very useful.

PyChecker and PyLint. These two tools read source code and point out potential (and
actual) problems. They check everything from short variable names to unreachable pieces
of code. With a little coding you can make them (or one of them) part of your test suite, to
make sure all of your rewrites and refactorings conform to your coding standards.

Profiling. If you really care about speed and want to optimize your program (only do this
if it’s absolutely necessary), you should profile it first. Use the profile (or hotshot) module
to find bottlenecks in your code.

C H A P T E R 1 6 ■ T E S T I N G , 1 - 2 - 3 355

New Functions in This Chapter

What Now?
Now you’ve seen all kinds of things you can do with the Python language and the standard
libraries; you’ve seen how to probe and tweak your code until it screams (if you got serious
about profiling, despite my warnings). If you still aren’t getting the oomph you require, it’s
time to reach for heavier weapons. In the words of Neo in The Matrix: We need guns. Lots of
guns. In less metaphorical terms: It’s time to pop the cover and tweak the engine with some
low-level tools. (Wait, that was still metaphorical, wasn’t it?)

Function Description

doctest.testmod(module) Check docstring examples. (Takes many more arguments.)

unittest.main() Run the unit tests in the current module.

profile.run(stmt[, filename]) Execute and profile statement. Optionally save results
to filename.

357

■ ■ ■

C H A P T E R 1 7

Extending Python

You can implement anything in Python, really; it’s a powerful language, but sometimes it can
get a bit . . . too slow. For example, if you’re writing a scientific simulation of some form of
nuclear reaction, or you’re rendering the graphics for the next Star Wars movie (wait—there
won’t be any more now, will there?), writing the high-performance code in Python will probably
not be a good choice. Python is meant to be easy to work with, and to help make the development
fast. The flexibility needed for this comes with a hefty price in terms of efficiency. It’s certainly
fast enough for most common programming tasks, but if you need real speed, languages such
as C, C++, and Java can usually beat it by several orders of magnitude.

Now, I don’t want to encourage the speed freaks among you to start developing exclusively
in C; remember, this may speed up the program itself, but it will most certainly slow down your
programming. So you need to consider what is most important: getting the program done quickly,
or eventually (in the distant future) getting a program that runs really, really fast. If Python is
fast enough, the extra pain involved will make using a low-level language such as C something
of a meaningless choice (unless you have other requirements, such as running on an embedded
device that doesn’t have room for Python, or something like that).

This chapter deals with the cases where you do need extra speed. The best solution then
probably isn’t to switch entirely to C (or some other low- or mid-level language); instead, I
recommend the following approach, which has worked for plenty of industrial-strength speed
freaks out there (in one form or another):

1. Develop a prototype in Python. (See Chapter 19 for some material on prototyping.)

2. Profile your program and determine the bottlenecks. (See Chapter 16 for some material
on testing.)

3. Rewrite the bottlenecks as a C (or C++, C#, Java, Fortran, etc.) extension.

The resulting architecture—a Python framework with one or more C components—is a
very powerful one, because it combines the best of two worlds. It’s a matter of choosing the
right tools for each job. It affords you the benefits of developing a complex system in a high-level
language (Python), and it lets you develop your smaller (and presumably simpler) speed-critical
components in a low-level language (C).

If you have some knowledge of what the bottlenecks of your system will be even before you
begin, you can (and probably should) design your prototype so that replacing the critical parts
is easy. I think I might as well state this in the form of a tip:

358 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

■Tip Encapsulate potential bottlenecks.

You may find that you don’t need to replace the bottlenecks with C extensions (perhaps
you suddenly got ahold of a faster computer), but at least the option is there.

There is another situation that is a common use case for extensions as well: legacy code.
There may be some existing code that you want to use, and it exists only in, say, C. You can then
“wrap” this code (write a small C library that gives you a proper interface) and create a Python
extension library from your wrapper.

In the following sections, I give you some starting points for extending both the classical C
implementation of Python, either by writing all the code yourself or by using a tool called SWIG,
and for extending two other implementations: Jython and IronPython. You will also find some
hints about other options for accessing external code. Read on . . .

WHAT ABOUT FORTRAN?

While I won’t explicitly discuss how to connect Python with Fortran in this chapter, it is certainly possible.
Fortran was the first “real” programming language (originally developed in 1954). Still, in some areas, Fortran
is the language of choice for high-performance computing. If you want to (or, perhaps more likely, have to) use
Fortran for your extensions, you should check out Pyfort (http://pyfortran.sf.net) and F2PY (http://
cens.ioc.ee/projects/f2py2e).

The Really Easy Way: Jython and IronPython
If you happen to be running Jython or IronPython (both mentioned in Chapter 1), extending
your Python with native modules is quite easy. The reason for this is that Jython and IronPython
give you direct access to modules and classes from the underlying languages (Java for Jython and
C# and other .NET languages for IronPython), so you don’t have to conform to some specific
API (as you have to when extending CPython)—you simply implement the functionality you
need, and, as if by magic, it will work in Python. As a case in point, you can access the Java standard
libraries directly in Jython and the C# standard libraries directly in IronPython.

Listing 17-1 shows a simple Java class. You can compile this with some Java compiler, such
as javac (freely downloadable from http://java.sun.com).

Listing 17-1. A Simple Java Class (JythonTest.java)

public class JythonTest {

 public void greeting() {
 System.out.println("Hello, world!");
 }

}

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 359

Once you have compiled the class (and put the .class file either in your current directory
or somewhere in your Java CLASSPATH), you can fire up Jython (with the jython command) and
import the class directly:

>>> import JythonTest
>>> test = JythonTest()
>>> test.greeting()
Hello, world!

See? There’s nothing to it.

■Tip If you’re working with Java, you can also use the command jythonc to compile your Python classes
into Java classes, which can then be imported into your Java programs.

Listing 17-2 shows a similar class in C#. Compile this with your compiler of choice (free
software available from http://www.mono-project.com).

Listing 17-2. A Simple C# Class (IronPythonTest.cs)

using System;
namespace FePyTest {
 public class IronPythonTest {

 public void greeting() {
 Console.WriteLine("Hello, world!");
 }

 }
}

One way of using this in IronPython would be to compile the class to a DLL (see the docu-
mentation for your C# installation for details) and update the relevant environment variables
(such as PATH) as needed. Then you should be able to use it as in the following (using the
FePyConsole prompt):

>>> import sys
>>> sys.LoadAssemblyFromFile("IronPythonTest.dll")
>>> import FePyTest
>>> f = FePyTest.IronPythonTest()
>>> f.greeting()

360 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

■Note While I focus on extending Python here, it is also entirely possible to use Jython in your Java
programs, IronPython in your C# programs, and CPython in your C programs (in other words, you can use
Python to extend other languages). See the relevant documentation for more information.

For more details on these implementations of Python, see the Jython Web page (http://
www.jython.org) and the IronPython Web page (http://www.ironpython.org; see also http://
workspaces.gotdotnet.com/ironpython).

Writing C Extensions
This is what it’s all about, really. Extending Python normally means extending CPython, the
standard version of Python, implemented in the programming language C.

■Tip For a basic introduction and some background material, see the Wikipedia article on C, http://
en.wikipedia.org/wiki/C_programming_language. For more information, check out Ivor Horton’s
book Beginning C, Third Edition (Apress, 2004). A really authoritative source of information is the all-time
classic by Brian Kernighan and Dennis Ritchie, the inventors of the language: The C Programming Language,
Second Edition (Prentice-Hall, 1988).

C isn’t quite as dynamic as Java or C#, and it’s not as easy for Python to figure out things for
itself if you just supply it with your compiled C code. Therefore, you have to adhere to a relatively
strict API when writing C extensions for Python; I discuss this API a bit later. There are several
projects that try to make the process of writing C extensions easier, though, and one of the
better-known projects is SWIG, which I discuss in the following section. (See the sidebar
“Other Approaches” for some . . . well . . . other approaches.)

OTHER APPROACHES

If you’re using CPython, there are plenty of tools available to help you speed up your programs, either by gener-
ating and using C libraries or by actually speeding up your Python code. Here is an overview of some options:

Psyco (http://psyco.sf.net). A specialized just-in-time compiler for Python, which can speed up
certain kinds of code (especially low-level code dealing with lists of numbers) by an order of magnitude or
more. It won’t help in all cases, and does need quite a bit of memory to do its job well. It’s very easy to use—
in the simplest case, just import it and call psyco.full(). One of the interesting things about Psyco is that
it actually analyzes what goes on while the program is running, so it may, in fact, speed up some Python code
beyond what you could achieve by writing a C extension! (Perhaps it’s worth a try, before you dive into the
nearest C textbook?)

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 361

Pyrex (http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex). A Python “dialect”—sort
of. It’s a language specifically designed for writing extension modules for Python. The Pyrex language combines
Python (or a subset of it) with optional static typing as in C. Once you’ve written a module in Pyrex, you can
translate it into C code using the pyrexc program. The resulting C code has been constructed to conform to
the Python C API, so after compiling it (as described in the main text), you should be able to use it in your Python
program without problems. Pyrex can certainly take much of the drudgery out of writing C extensions, while
still letting you control the details you might care about, such as the exact C data types for some of your variables.

Weave (http://www.scipy.org/documentation/weave). Part of the SciPy distribution, but also
available separately, Weave is a tool for including C or C++ code directly in your Python code (as strings) and
having the code compiled and executed seamlessly. If you have certain mathematical expressions you want to
compute quickly, for example, then this might be the way to go. Weave can also speed up expressions using
numeric arrays (see the next item).

NumPy (http://numeric.scipy.org). At present, there are two main implementations of multi-
dimensional, numeric arrays in Python—numeric and numarray—both using more or less the same interface.
It seems that they may be unified as the package scipy.core. However this turns out, numeric arrays are
very useful for analyzing many forms of numeric data (from stock values to astronomical images). One advantage
is the simple interface, which relieves the need to explicitly specify many low-level operations; the main
advantage, however, is speed. Performing many common operations on every element in a numeric array is
much, much faster than doing something equivalent with lists and for-loops, because the implicit loops are
implemented directly in C. Numeric arrays work well with both Pyrex and Weave.

ctypes (http://starship.python.net/crew/theller/ctypes). The ctypes library takes a very
direct approach—it simply lets you import preexisting (shared) C libraries. While there are some restrictions,
this is, perhaps, one of the simplest ways of accessing C code. No need for wrappers or special APIs; you just
import the library and use it.

subprocess. Okay, this one’s a bit different. It’s a module that can be found in the standard library, along
with the older modules and functions with similar functionality, and it allows you to have Python run external
programs, and communicate with them through command-line arguments, and the standard input, output,
and error streams. If your speed-critical code can do much of its work in a few long-running batch jobs, little
time will be lost starting the program and communicating with it. In that case, simply placing your C code in a
completely separate program and running it as a subprocess could well be the cleanest solution of all.

modulator. Found in the Tools directory of your Python distribution, this script can be used to generate
some of the boilerplate code needed for C extensions.

A Swig of . . . SWIG
SWIG (http://www.swig.org), short for Simple Wrapper and Interface Generator, is a tool that
works with several languages. On the one hand, it lets you write your extension code in C or
C++; on the other hand, it automatically wraps these so that you can use them in several high-
level languages such as Python, Perl, Tcl/Tk, Ruby, C#, Common Lisp, Java, Modula-3, OCAML,
Scheme, PHP—the list goes on and on (and you can read it at http://www.swig.org/compat.html).
This means that if you decide to write some of your system as a C extension, rather than imple-
ment it directly in Python, the C extension library can also be made available (using SWIG) to
a host of other languages. This can be very useful if you want several subsystems written in

362 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

different languages to work together; your C (or C++) extension can then become a hub for the
cooperation.

INSTALLING SWIG

By now, I guess you ought to be quite savvy about installing things. As before . . .

• You can get SWIG from the Web site, http://www.swig.org.

• Many UNIX/Linux distributions come with SWIG. Many package managers will let you install it directly.

• There is a binary installer for Windows.

• Compiling the sources yourself is again simply a matter of calling configure and make install.

If you have problems installing SWIG, you should be able to find helpful information on the Web page.

What Does It Do?

Using SWIG is a simple process, provided that you have some C code:

1. Write an interface file for your code. This is quite similar to C header files (and, for
simple cases, you can use your header file directly).

2. Run SWIG on the interface file, in order to automatically produce some more C code
(wrapper code).

3. Compile the original C code together with the generated wrapper code in order to
generate a shared library.

In the following, I discuss each of these steps, starting with a bit of C code . . .

I Prefer Pi

A palindrome (such as the title of this section) is a sentence that is the same when read back-
wards, if you ignore spaces and punctuation and the like. Let’s say you want to recognize huge
palindromes, without the allowance for whitespace and friends. (Perhaps you need it for
analyzing a protein sequence or something.) Of course, the string would have to be really big
for this to be a problem for a pure Python program, but let’s say the strings are really big, and
that you have to do lots and lots of these checks. You decide to write a piece of C code to deal
with it (or perhaps you find some finished code—as mentioned, using existing C code in
Python is one of the main uses of SWIG). Listing 17-3 shows a possible implementation.

Listing 17-3. A Simple C Function for Detecting a Palindrome (palindrome.c)

#include <string.h>

int is_palindrome(char *text) {
 int i, n=strlen(text);

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 363

 for (i=0; i<=n/2; ++i) {
 if (text[i] != text[n-i-1]) return 0;
 }
 return 1;
}

Just for reference, an equivalent pure Python function is shown in Listing 17-4.

Listing 17-4. Detecting Palindromes in Python

def is_palindrome(text):
 n = len(text)
 for i in range(len(text)//2):
 if text[i] != text[n-i-1]:
 return False
 return True

You’ll see how to compile and use the C code in a bit.

The Interface File

Assuming that you put the code from Listing 17-3 in a file called palindrome.c, you should now
put an interface description in a file called palindrome.i. In many cases, if you define a header
file (that is, palindrome.h), SWIG may be able to get the information it needs from that. So if you
have a header file, feel free to try to use it. One of the reasons for explicitly writing an interface
file is that you can tweak how SWIG actually wraps the code; the most important tweak is excluding
things. For example, if you’re wrapping a huge C library, perhaps you only want to export a
couple of functions to Python. In that case, you only put the functions you want to export in the
interface file.

In the interface file, you simply declare all the functions (and variables) you want to export,
just like in a header file. In addition, there is a section at the top (delimited by %{ and %}) where
you specify included header files (such as string.h in our case) and before even that, a %module
declaration, giving the name of the module. (Some of this is optional, and there is a lot more
you can do with interface files; see the SWIG documentation for more information.)

Listing 17-5. Interface to the Palindrome Library (palindrome.i)

%module palindrome

%{
#include <string.h>
%}

extern int is_palindrome(char *text);

Running SWIG

Running SWIG is probably the easiest part of the process. There are a lot of command-line
switches you can use, however, if you feel like it. (Try running swig -help for a list of options.)

364 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

The only one needed is the -python option, to make sure SWIG wraps your C code so you can
use it in Python. Another option you may find useful is -c++, which you use if you’re wrapping
a C++ library. You run SWIG with the interface file (or, if you prefer, a header file) like this:

$ swig -python palindrome.i

After this, you should have two new files—one called palindrome_wrap.c and one called
palindrome.py.

Compiling, Linking, and Using

This is, perhaps, the most tricky part (at least I think so). In order to compile things properly,
you need to know where you keep the source code of your Python distribution (or, at least, the
header files called pyconfig.h and Python.h; you will probably find these in the root directory
of your Python installation, and in the Include subdirectory, respectively). You also have to
figure out the right switches to compile your code into a shared library with your C compiler of
choice. Here is an example for Solaris using the cc compiler, assuming that $PYTHON_HOME points
to the root of Python installation:

$ cc -c palindrome.c
$ cc -I$PYTHON_HOME -I$PYTHON_HOME/Include -c palindrome_wrap.c
$ cc -G palindrome.o palindrome_wrap.o -o _palindrome.so

Here is the sequence for using the gcc compiler in Linux:

gcc -c palindrome.c
gcc -I$PYTHON_HOME -I$PYTHON_HOME/Include -c palindrome_wrap.c
gcc -shared palindrome.o palindrome_wrap.o -o _palindrome.so

It may be that all the necessary include files are found in one place, such as /usr/include/
python2.4 (update the version number as needed). In this case, the following should do the trick:

gcc -c palindrome.c
gcc -I/usr/include/python2.4 -c palindrome_wrap.c
gcc -shared palindrome.o palindrome_wrap.o -o _palindrome.so

In Windows (again assuming that you’re using gcc on the command line) you could use
the following command as the last one, for creating the shared library:

gcc -shared palindrome.o palindrome_wrap.o C:/Python24/libs/libpython24.a -o
_palindrome.dll

■Note If you use gcc on Solaris, add the flag -fPIC to the first two command lines (right after the
command gcc). Otherwise, the compiler will become mighty confused when you try to link the files in the last
command. Also, if you’re using using a package manager (as is common in many Linux platforms), you may
have to install a separate package (called something like python-dev) to get the header files needed to
compile your extensions.

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 365

After these darkly magical incantations, you should end up with a highly useful file called
_palindrome.so. This is your shared library, which can be imported directly into Python (if it’s
put somewhere in your PYTHONPATH, for example in the current directory):

>>> import _palindrome
>>> dir(_palindrome)
['__doc__', '__file__', '__name__', 'is_palindrome']
>>> _palindrome.is_palindrome('ipreferpi')
1
>>> _palindrome.is_palindrome('notlob')
0

In older versions of SWIG, that would be all there was to it. Recent versions of SWIG, however,
generate some wrapping code in Python as well (the file palindrome.py, remember). This wrapper
code imports the _palindrome module and takes care of a bit of checking. If you’d rather skip
that, you could just remove the palindrome.py file and link your library directly into a file
named palindrome.so.

Using the wrapper code works just as well as using the shared library:

>>> import palindrome
>>> from palindrome import is_palindrome
>>> if is_palindrome('abba'):
... print 'Wow -- that never occurred to me...'
...
Wow -- that never occurred to me...

A Shortcut Through the Magic Forest of Compilers

If you think the compilation process can be a bit arcane, you’re not alone. If you automate the
compilation (say, using a makefile) users will have to configure the setup by specifying where
their Python installation is, which specific options to use with their compiler, and, not the least,
which compiler to use. You can avoid this elegantly by using Distutils, which I discuss in more
detail in the next chapter. In fact, it has direct support for SWIG, so you don’t even have to run
that manually. You just write the code and the interface file, and run your Distutils script. For
more information about this magic, see the section “Compiling Extensions” in Chapter 18.

Hacking It on Your Own
SWIG does quite a bit of magic behind the scenes, but not all of it is strictly necessary. If you
want to get close to the metal and grind your teeth on the processor, so to speak, you can certainly
write your wrapper code yourself—or simply write your C code so that it uses the Python C API
directly.

The Python C API is described in documents “Extending and Embedding the Python
Interpreter” (a tutorial) and “Python/C API Reference Manual” (a reference) by Guido van
Rossum (both available from http://python.org/doc). There is quite a bit of information to
swallow in these documents, but if you know some C programming, the first one (“Extending
and Embedding . . .”) includes a fairly gentle introduction. I’ll try to be even gentler (and
briefer) here. If you’re curious about what I’m leaving out (which is rather a lot), you should
take a look at the docs.

366 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

Reference Counting

If you haven’t worked with it before, reference counting will probably be one of the most foreign
concepts you’ll encounter in this section, although it’s not really all that complicated. In Python,
memory used is dealt with automatically—you just create objects, and they disappear when
you no longer use them. In C, this isn’t the case: you have to explicitly deallocate objects (or,
rather, chunks of memory) that you’re no longer using. If you don’t, your program may start
hogging more and more memory, and you have what’s called a memory leak.

When writing Python extensions, you have access to the same tools Python uses “under
the hood” to manage memory, one of which is reference counting. The idea is that as long as
some parts of your code have references to an object (that is, in C-speak, pointers pointing to
it), it should not be deallocated. However, once the number of references to an object hits zero,
the number can no longer increase—there is no code that can create new references to it, and
it’s just “free floating” in memory.

At this point, it’s safe to deallocate it. Reference counting automates this process: You
follow a set of rules where you increment or decrement the reference count for an object under
various circumstances (through a part of the Python API), and if the count ever goes to zero,
the object is automatically deallocated. This means that no single piece of code has the sole
responsibility for managing an object. You can create an object, return it from a function, and
forget about it, safe in the knowledge that it will disappear when it is no longer needed.

You use two macros called Py_INCREF and Py_DECREF to increment and decrement the
reference count of an object, respectively. You can find detailed information about how to use
these in the Python documentation (http://python.org/doc/ext/refcounts.html); here is the
gist of it:

• You can’t own an object, but you can own a reference to it. The reference count of an
object is the number of owned references to it.

• If you own a reference, you are responsible for calling Py_DECREF when you no longer
need the reference.

• If you borrow a reference temporarily, you should not call Py_DECREF when you’re
finished with the object; that’s the responsibility of the owner. (You should certainly
never use a borrowed reference after the owner has disposed of it. See the “Thin Ice”
sections in the documentation for some more advice on staying safe.)

• You can change a borrowed reference into an owned reference by calling Py_INCREF.
This creates a new owned reference; the original owner still owns the original reference.

• When you receive an object as a parameter, it’s up to you whether you want the owner-
ship of its reference transferred (for example, if you’re going to store it somewhere) or
whether you simply want to borrow it. This should be documented clearly. If your func-
tion is called from Python, it’s safe to simply borrow—the object will live for the duration
of the function call. If, however, your function is called from C, this cannot be guaranteed,
and you might want to create an owned reference, and release it when you’re finished.

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 367

• If you create a new object and return it, you should transfer ownership to the caller. In
other words, if you don’t already have a reference to the object, you should call Py_INCREF; if
you do have a reference, you should simply avoid calling Py_DECREF. You then just leave
it up to the receiver to call Py_DECREF at some later stage. (This also applies if you return
a global constant, such as None.) If you simply extract a part of another object, such as a
list, that object (for example, the list) may still have a reference to the object or element,
so you may return a borrowed reference (in other words, not call Py_INCREF, or, if you
already have a reference, call Py_DECREF, and require that the receiver won’t call Py_DECREF).
Which you choose should be clearly documented. Note that this only applies if your
function is called from other C functions. If it’s called from Python, it should always
transfer ownership (that is, always give the receiver its own reference, either by avoiding
calling Py_DECREF on a reference you already have, or, if you don’t have one, by calling
Py_INCREF).

Hopefully, this will all seem clearer when we get down to a concrete example in a little while.

MORE GARBAGE COLLECTION

Reference counting is a form of garbage collection, where the term “garbage” refers to objects that are no
longer of use to the program. Python also uses a more sophisticated algorithm to detect cyclic garbage, that
is, objects that only refer to each other (and thus have nonzero reference counts), but have no other objects
referring to them.

You can access the Python garbage collector in your Python programs, through the gc module. You
can find more information about it in the Python Library Reference (http://python.org/doc/lib/
module-gc.html).

A Framework for Extensions

There’s quite a lot of cookie-cutter code needed to write a Python C extension, which is why
tools such as SWIG, Pyrex, and modulator are so nice: Automating cookie-cutter code is the
way to go. Doing it by hand can be a great learning experience, though. You do have quite some
leeway in how you structure your code, really; I’ll just show you a way that works.

The first thing to remember is that the Python.h header file must be included first, before
other standard header files. That is because it may, on some platforms, perform some redefini-
tions that should be used by the other headers. So, for simplicity, just place

#include <Python.h>

as the first line of your code.
Your function can be called anything you want; it should be static, return a pointer (an

owned reference) to an object of the PyObject type, and take two arguments, both also pointers
to PyObject. The objects are conventionally called self and args (with self being the self-object,
or NULL, and args being a tuple of arguments). In other words, the function should look some-
thing like this:

368 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

static PyObject *somename(PyObject *self, PyObject *args) {
 PyObject *result;

 /* Do something here, including allocating result. */

 Py_INCREF(result); /* Only if needed! */
 return result;
}

The self argument is only actually used in bound methods; in other functions, it will
simply be a NULL pointer.

Note that the call to Py_INCREF may not be needed. If the object is created in the function
(for example, using a utility function such as Py_BuildValue), the function will already own a
reference to it, and can simply return it. If, however, you wish to return None from your function,
you should use the existing object Py_None. In this case, however, the function does not own a
reference to Py_None, and so should call Py_INCREF(Py_None) before returning it.

The args parameter contains all the arguments to your function (except, if present, the
self argument). In order to extract the objects, you use the function PyArg_ParseTuple (for
positional arguments) and PyArg_ParseTupleAndKeywords (for positional and keyword arguments).
I’ll stick to positional arguments here.

The function PyArg_ParseTuple has the signature

int PyArg_ParseTuple(PyObject *args, char *format, ...);

The format string describes what arguments you’re expecting, and then you supply the
addresses of the variables you want populated at the end. The return value is a Boolean value:
If it’s true, everything went well; otherwise, there was an error. If there was an error, the proper
preparations for raising an exception will have been made (you can learn more about that in
the documentation) and all you have to do is to return NULL to set it off. So, if we’re not expecting
any arguments (an empty format string), the following is a useful way of handling arguments:

 if (!PyArg_ParseTuple(args, "")) {
 return NULL;
 }

If the code proceeds beyond this statement, we know we have our arguments (in this case
no arguments). Format strings can look like "s" for a string, "i" for an integer, "o" for a Python
object (there are many more codes), with possible combinations such as "iis" for two integers
and a string. A full reference of how to write format strings can be found in the Python/C API
Reference (http://python.org/doc/api/arg-parsing.html).

WHAT ABOUT CLASSES? AND OBJECTS? AND TYPES?

You can create your own built-in types and classes in extension modules too. It’s not too hard, really, but still
a rather involved subject, so I’ll skip it for now. If you mainly need to factor out some bottleneck code into C,
using functions will probably be enough for most of your needs anyway. If you want to learn how to create
types and classes, the Python documentation is a good source of information.

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 369

Once you’ve got your function in place, there is still some extra wrapping needed to make
your C code act as a module. But let’s get back to that once we’ve got a real example to work
with, shall we?

Palindromes, Detartrated1 for Your Pleasure

Without further ado, I give you the hand-coded Python C API version of the palindrome
module (with some interesting new stuff added) in Listing 17-6.

Listing 17-6. Palindrome Checking Again (palindrome2.c)

#include <Python.h>

static PyObject *is_palindrome(PyObject *self, PyObject *args) {
 int i, n;
 const char *text;
 int result;
 /* "s" means a single string: */
 if (!PyArg_ParseTuple(args, "s", &text)) {
 return NULL;
 }
 /* The old code, more or less: */
 n=strlen(text);
 result = 1;
 for (i=0; i<=n/2; ++i) {
 if (text[i] != text[n-i-1]) {
 result = 0;
 break;
 }
 }
 /* "i" means a single integer: */
 return Py_BuildValue("i", result);
}

/* A listing of our methods/functions: */
static PyMethodDef PalindromeMethods[] = {
 /* name, function, argument type, docstring */
 {"is_palindrome", is_palindrome, METH_VARARGS, "Detect palindromes"},
 /* An end-of-listing sentinel: */
 {NULL, NULL, 0, NULL}
};

1. That is, the tartrates have been removed. Okay, so the word is totally irrelevant to the code (and more
relevant to fruit juices), but at least it’s a palindrome.

370 C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N

/* An initialization function for the module (the name is
 significant): */
PyMODINIT_FUNC initpalindrome() {
 Py_InitModule("palindrome", PalindromeMethods);
}

Most of the added stuff in Listing 17-6 is total boilerplate. Where you see palindrome, you
could insert the name of your module, while where you see is_palindrome, insert the name of
your function. If you have more functions, simply list them all in the PyMethodDef array. One
thing is worth noting, though: The name of the initialization function must be initmodule,
where module is the name of your module; otherwise, Python won’t find it.

So, let’s compile! You do this just like in the section on SWIG, except that there is only one
file to deal with now. Here is an example using gcc (remember to add -fPIC in Solaris):

gcc -I$PYTHON_HOME -I$PYTHON_HOME/Include -shared palindrome2.c -o palindrome.so

Again, you should have a file called palindrome.so, ready for your use. Put it somewhere in
your PYTHONPATH (such as the current directory) and away we go:

>>> from palindrome import is_palindrome
>>> is_palindrome('foobar')
0
>>> is_palindrome('deified')
1

And that’s it. Now go play. (But be careful; remember the Waldi Ravens quote from the
Introduction.)

A Quick Summary
Extending Python is a huge subject. The tiny glimpse provided by this chapter included the
following:

Extension philosophy. Python extensions are useful mainly for two things: for using
existing (legacy) code, or for speeding up bottlenecks. If you’re writing your own code
from scratch, try to prototype it in Python, find the bottlenecks, and factor them out as
extensions if needed. Encapsulating potential bottlenecks beforehand can be useful.

Jython and IronPython. Extending these implementations of Python is quite easy: You
simply implement your extension as a library in the underlying implementation (Java for
Jython and C# or some other .NET language for IronPython) and immediately the code is
usable in your Python.

Extension approaches. There are plenty of tools for extending or speeding up your code:
for making the incorporation of C code into your Python program easier, for speeding up
common operations such as numeric array manipulation, or for speeding up Python itself.
Such tools includ SWIG, Psyco, Pyrex, Weave, NumPy, ctypes, subprocess, and modulator.

C H A P T E R 1 7 ■ E X T E N D I N G P Y T H O N 371

SWIG. SWIG is a tool for automatically generating wrapper code for your C libraries. The
wrapper code takes care of the Python C API so you don’t have to. It is one of the easiest
and most popular ways of extending Python.

Using the Python/C API. You can write C code yourself that can be imported directly into
Python as shared libraries. To do this, you have to adhere to the Python/C API. Things you
have to take care of for each function include reference counting, extracting arguments,
and building return values. There is also a certain amount of code needed to make a C
library work as a module, including listing the functions in the module and creating a
module initialization function.

New Functions in This Chapter

What Now?
Now you ought to either have some really cool programs or at least some really cool program
ideas. Once you’ve got something you want to share with the world (and you do want to share
your code with the world, don’t you?), the next chapter can be your next step.

Function Description

Py_INCREF(obj) Increment reference count of obj

Py_DECREF(obj) Decrement reference count of obj

PyArg_ParseTuple(args, fmt, ...) Extract positional arguments

PyArg_ParseTupleAndKeywords(args, kws, fmt, kwlist) Extract positional and keyword
arguments

PyBuildValue(fmt, value) Build a PyObject from a C value

373

■ ■ ■

C H A P T E R 1 8

Packaging Your Programs

Once your program is ready for release, you will probably want to package it up properly
before distributing it. If it consists of a single .py file, this might not be much of an issue, but if
you’re dealing with nonprogrammer users, even placing a simple Python library in the right
place or fiddling with the PYTHONPATH may be more than they want to deal with. Users normally
want to simply double-click an install program, follow some install wizard, and then have your
program ready to run.

Lately, Python programmers have also become used to a similar convenience, although
with a slightly more low-level interface. The Distutils toolkit for distributing Python packages
easily lets you write install scripts in Python. You can use these scripts to build archive files for
distribution, which the programmer (user) can then use for compiling and installing your libraries.

In this chapter, I focus on Distutils, because it is an essential tool in every Python
programmer’s toolkit. And Distutils actually goes beyond the script-based installation of Python
libraries: you can build simple Windows installers using it, and with the extension py2exe you
can build standalone Windows executable programs with it.

And if you want a self-installing archive for your binaries, I provide a few pointers for that
as well.

Distutils Basics
Distutils is documented thoroughly in the two documents “Distributing Python Modules”
and “Installing Python Modules,” both available from the Python Library Reference (http://
python.org/doc/lib/module-distutils.html). You can use Distutils to do all manner of useful
things by writing a script as simple as this:

from distutils.core import setup

setup(name='Hello',
 version='1.0',
 description='A simple example',
 author='Magnus Lie Hetland',
 py_modules=['hello'])

374 C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S

■Note The extra values you set here are used for several things. The name and version keywords, for
example, are used for naming archive files, and the author and description keywords end up in a file
called PKG-INFO in any archives you build.

You don’t really have to supply all of this information in the setup function (you don’t
actually have to supply any arguments at all), and you certainly can supply more (such as
author_email or url). The names should be self-explanatory. In the following sections, you’ll
see what you can use this simple script for.

Basic Installation
Name your script setup.py (this is a universal convention for Distutils setup scripts), and make
sure that you have a simple module called hello.py in the same directory.

■Caution The setup script will create new files and subdirectories in the current directory when you run it,
so you should probably experiment with it in a fresh directory to avoid having old files being overwritten.

Now execute the script, like this:

python setup.py

You should get some output like the following:

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
 or: setup.py --help [cmd1 cmd2 ...]
 or: setup.py --help-commands
 or: setup.py cmd --help

error: no commands supplied

As you can see, you can get more information using the --help or --help-commands switches.
Try to use the build command, just to see Distutils in action:

python setup.py build

You should now see output like the following:

C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S 375

running build
running build_py
creating build
creating build/lib
copying hello.py -> build/lib

What has happened is that Distutils has created a subdirectory called build, with yet another
subdirectory named lib, and placed a copy of hello.py in build/lib. The build subdirectory is
a sort of working area where Distutils assembles a package (and compiles extension libraries,
for example). You don’t really need to run the build command when installing—it will be run
automatically, if needed, when you run the install command.

Speaking of which . . . let’s try to install the module:

python setup.py install

■Caution This will copy the hello.py module to some system-specific directory in your PYTHONPATH.
This should not pose a risk, but if you don’t want to clutter up your system, you might want to remove it after-
ward; make a note of the specific location where it is placed, as output by setup.py. At the time of writing,
there is no standard uninstall command, so you’ll have to uninstall the module by hand.

Now you should see something like the following:

running install
running build
running build_py
running install_lib
copying build/lib/hello.py -> /path/to/python/lib/python2.4/site-packages
byte-compiling /path/to/python/lib/python2.4/site-packages/hello.py to hello.pyc

■Note If you’re running a version of Python that you didn’t install yourself, and don’t have the proper privileges,
you may not be allowed to install the module as shown, because you don’t have write permissions to the right
directory.

This is the standard mechanism used to install Python modules, packages, and extensions.
All you have to do is provide the little setup script.

376 C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S

In the example script, I have only used the Distutils directive py_modules; if you want to
install entire packages, you can use the directive packages in an equivalent manner (just list the
package names). There are many other options you can set (some of which are covered in the
section “Compiling Extensions,” later in this chapter). You can also create configuration files
for Distutils to set various properties (see the section “Distutils Configuration Files” in “Installing
Python Modules,” http://python.org/doc/inst/config-syntax.html).

The various ways of providing options (command-line switches, keyword arguments to
setup, and Distutils configuration files) let you specify such things as what to install and where
to install it. The nice thing is that these options can be used for more than one thing. The following
section shows you how to wrap the modules you specified for installation as an archive file,
ready for distribution.

Wrapping Things Up
Once you’ve written a setup.py script that will let the user install your modules, you can use it
yourself, to build an archive file. You do this with the sdist (for “source distribution”)
command:

python setup.py sdist

If you run this, you will probably get quite a bit of output, including some warnings. The
warnings I get include a complaint about a missing author_email option, a missing MANIFEST.in
file, and a missing README file. We can safely ignore all of these (although feel free to add an
author_email option to your setup.py script, similar to the author option, and a README or
README.txt text file and an empty file called MANIFEST.in in the current directory).

WHAT’S MANIFEST.in?

When you create a source distribution, a file called MANIFEST is created, containing a list of all your files. The
MANIFEST.in file is a template for the manifest, and is used when figuring out what to install. You can include
lines like

include somedirectory/somefile.txt

or

include somedirectory/*

to specify files that you want to have included, if Distutils hasn’t figured it out by itself, using your setup.py
script (and default includes, such as README).

After the warnings you should see output like the following:

C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S 377

writing manifest file 'MANIFEST'
creating Hello-1.0
making hard links in Hello-1.0...
hard linking hello.py -> Hello-1.0
hard linking setup.py -> Hello-1.0
tar -cf dist/Hello-1.0.tar Hello-1.0
gzip -f9 dist/Hello-1.0.tar
removing 'Hello-1.0' (and everything under it)

■Note If you’ve run the command before, and you have a file called MANIFEST already, you will see the
word reading instead of writing at the beginning. If you’ve restructured your package and want to repackage
it, deleting the MANIFEST file can be a good idea, in order to start afresh.

Now, in addition to the build subdirectory, you should have one called dist. Inside it, you
will find a gzip’ed tar archive called Hello-1.0.tar.gz. This can now be distributed to others,
and they can unpack it and install it using the included setup.py script. If you don’t want a
.tar.gz file, there are plenty of other distribution formats available, and you can set them all
through the command-line switch --formats. (As the plural name indicates, you can supply
more than one format, separated by commas, to create more archive files in one go.) The format
names available in Python 2.4 are bztar (for bzip2’ed tar files), gztar (the default, for gzip’ed
tar files), tar (for uncompressed tar files), zip (for ZIP files), and ztar (for compressed tar files,
using the UNIX command compress).

There is also a command called bdist, which you can use (among other things) to create
simple Windows installers and Linux RPM files. (You normally use this to create binary distri-
butions, where extensions have been compiled for a particular architecture. See the following
section for information about compiling extensions.) The formats available for bdist (in addition
to the ones available for sdist) are rpm (for RPM packages) and wininst (for Windows executable
installer).

One interesting twist is that you can, in fact, build Windows installers for your package in
non-Windows systems, provided that you don’t have any extensions you need to compile. If
you have access to both, say, a Linux machine and a Windows box, you could try running

python setup.py bdist --formats=wininst

on your Linux machine, and then (after ignoring a few warnings about compiler settings)
copying the file dist/Hello-1.0.win32.exe to your Windows machine and running it. You
should then be presented with a rudimentary installer wizard. (You can cancel the process
before actually installing the module, if you’d like.)

378 C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S

USING A REAL INSTALLER

The installer you get with the wininst format in Distutils is very basic. As with normal Distutils installation,
it will not let you uninstall your packages, for example. This may not be a problem for you, but sometimes you
may want a more professional look. This can be especially true if you’re creating an executable using py2exe
(described later in this chapter). In this case, you might want to consider using some standard installer such
as Inno Setup (http://jrsoftware.org/isinfo.php), which works very well with executables created
with py2exe, and will install your program more as a normal Windows program and give you functionality
such as uninstalling.

A more Python-centric option is the McMillan installer (a Web search should give you an updated down-
load location), which can also work as an alternative to py2exe when building executable programs. Other
options include InstallShield (http://installshield.com), Wise installer (http://wise.com), Installer
VISE (http://www.mindvision.com), Nullsoft Scriptable Install System (http://nsis.sf.net), Youseful
Windows Installer (http://youseful.com), and Ghost Installer (http://ethalone.com).

For more information on the Windows Installer, see Phil Wilson’s The Definitive Guide to Windows
Installer (Apress, 2004).

Compiling Extensions
In Chapter 17, you saw how to write extensions for Python. You may agree that compiling these
extensions could be a bit cumbersome at times; luckily, you can use Distutils for this as well.
You may want to refer back to Chapter 17 for the source code to the program palindrome (in
Listing 17-6). Assuming that you have the source file palindrome2.c in the current (empty) direc-
tory, the following setup.py script could be used to compile (and install) it:

from distutils.core import setup, Extension

setup(name='palindrome',
 version='1.0',
 ext_modules = [
 Extension('palindrome', ['palindrome2.c'])
])

If you run the install command with this setup.py script, the palindrome extension module
should be compiled automatically before it is installed. As you can see, instead of specifying
a list of module names, you give the ext_modules argument a list of Extension instances. The
constructor takes a name and a list of related files—this is where you would specify header (.h)
files, for example.

If you’d rather just compile the extension in place (resulting in a file called palindrome.so
in the current directory), you can use the following command:

python setup.py build_ext --inplace

Now we get to a real juicy bit . . . if you’ve got SWIG installed (see Chapter 17), you can have
Distutils use it directly!

C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S 379

Take a look at the source for the original palindrome.c (without all the wrapping code) in
Listing 17-3. It’s certainly much simpler than the wrapped-up version. Being able to compile it
directly as a Python extension, having Distutils use SWIG for you, can be very convenient. It’s
all very simple, really—you just add the name of the interface (.i) file (see Listing 17-5) to the
list of files in the Extension instance:

from distutils.core import setup, Extension

setup(name='palindrome',
 version='1.0',
 ext_modules = [
 Extension('palindrome', ['palindrome.c',
 'palindrome.i'])
])

If you run this script using the same command as before (build_ext, possibly with the
--inplace switch), you should end up with a palindrome.so file again, but this time without
having to write all the wrapper code yourself.

Creating Executable Programs with py2exe
The py2exe extension to Distutils (available from http://starship.python.net/crew/theller/
py2exe) allows you to build executable Windows programs (.exe files), which can be useful if
you don’t want to burden your users with having to install a Python interpreter separately.

■Tip After creating your executable program, you may want to use an installer such as Inno Setup, mentioned
in the sidebar “Using a Real Installer,” earlier in this chapter, to distribute the executable program and the
accompanying files, created by py2exe.

The py2exe package can be used to create executables with graphical user interfaces (such
as wx, as described in Chapter 12). Let’s use a very simple example here (it uses the raw_input
trick first discussed in the section “What About Double-Clicking?” in Chapter 1):

print 'Hello, world!'
raw_input('Press <enter>')

Again, starting in an empty directory containing only this file, called hello.py, create a
setup.py like this:

from distutils.core import setup
import py2exe

setup(console=['hello.py'])

380 C H A P T E R 1 8 ■ P AC K A G I N G Y O U R P R O G R A M S

You can run this script like this:

python setup.py py2exe

This will create a console application (called hello.exe) along with a couple of other files
in the dist subdirectory. You can either run it from the command line or double-click it.

More information on how py2exe works, and how you can use it in more advanced ways,
can be found on the py2exe Web site (http://starship.python.net/crew/theller/py2exe).

A Quick Summary
Finally, you now know how to create shiny, professional-looking software with fancy GUI
installers—or how to automate the generation of those precious .tar.gz files. Here is a summary
of the specific concepts covered:

Distutils. The Distutils toolkit lets you write installer scripts, conventionally called setup.py,
which let you install modules, packages, and extensions, and which let you build distributable
archives and simple Windows installers.

Distutils commands. You can run your setup.py script with several commands, such as
build, build_ext, install, sdist, and bdist.

Installers. There are many installer generators available, and you can use many of them to
install your Python programs, making the process easier for your users.

Compiling extensions. You can use Distutils to have your C extensions compiled automat-
ically, with Distutils automatically locating your Python installation and figuring out which
compiler to use. You can even have it run SWIG automatically.

py2exe. The py2exe extension to Distutils can be used to create executable binaries from
your Python programs. Along with a couple of extra files (which can be conveniently
installed with an installer), these .exe files can be run without installing a Python inter-
preter separately.

New Functions in This Chapter

What Now?
That’s it for the technical stuff—sort of. In the next chapter, you get some programming meth-
odology and philosophy, and then come the projects. Enjoy!

Function Description

distutils.core.setup(...) Used to configure Distutils with keyword args in your
setup.py scripts

381

■ ■ ■

C H A P T E R 1 9

Playful Programming

By now you should have a clearer picture of how Python works than when you started. Now
the rubber hits the road, so to speak, and in the next ten chapters you put your newfound skills
to work. Each chapter contains a single do-it-yourself project with lots of room for experimen-
tation, while at the same time giving you the necessary tools to implement a solution.

In this chapter, I give you some general guidelines for programming in Python, as well as a
short description of how the projects are laid out.

Why Playful?
I think one of the strengths of Python is that it makes programming fun—for me, anyway. It’s
much easier to be productive when you’re having fun; and one of the fun things about Python
is that it allows you to be very productive. It’s a positive feedback loop, and you get far too few
of those in life.

The expression Playful Programming is one I invented as a less extreme version of Extreme
Programming, or XP.

■Note Extreme Programming is an approach to software development created by Kent Beck. For more
information, see http://www.extremeprogramming.org.

I like many of the ideas of the XP movement but have been too lazy to commit completely
to their principles. Instead, I’ve picked up a few things, and combined them with what I feel is
a natural way of developing programs in Python.

The Ju-Jitsu of Programming
You have perhaps heard of ju-jitsu? It’s a Japanese martial art, which, like its descendants judo
and aikido, focuses on flexibility of response, or “bending instead of breaking.” Instead of trying to
impose your preplanned moves on an opponent, you go with the flow, using your opponent’s
movements against him or her. This way (in theory) you can beat an opponent who is bigger,
meaner, and stronger than you.

382 C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G

How does this apply to programming? The key is the syllable “ju,” which may be (very roughly)
translated as flexibility. When you run into trouble (as you invariably will) while programming,
instead of trying to cling stiffly to your initial designs and ideas, be flexible; roll with the punches.
Be prepared to change and adapt. Don’t treat unforeseen events as frustrating interruptions;
treat them as stimulating starting points for creative exploration of new options and possibilities.

The point is that when you sit down and plan how your program should be, you don’t have
any real experience with that specific program. How could you? After all, it doesn’t exist yet. By
working on the implementation, you gradually learn new things that could have been useful
when you did the original design. Instead of ignoring these lessons you pick up along the way,
you should use them to redesign (or refactor) your software. I’m not saying that you should just
start hacking away with no idea of where you are headed—just that you should prepare for
change, and accept that your initial design will need to be revised. It’s like the old writer’s
saying: “Writing is rewriting.”

This practice of flexibility has many aspects; here I’ll touch upon two of them:

• Prototyping. One of the nice things about Python is that you can write programs quickly.
Writing a prototype program is an excellent way to learn more about your problem.

• Configuration. Flexibility comes in many forms. The purpose of configuration is to
make it easy to change certain parts of your program, both for you and your users.

A third aspect, automated testing, is absolutely essential if you want to be able to change
your program easily. With tests in place, you can be sure that your program still works after
introducing a modification. Prototyping and configuration are discussed in the following
sections. For information on testing, see Chapter 16.

Prototyping
In general, if you wonder how something works in Python, just try it. You don’t have to do
extensive preprocessing, such as compiling or linking, which is necessary in many other languages.
You can just run your code directly. And not only that—you can run it piecemeal in the inter-
active interpreter, prodding at every corner until you thoroughly understand its behavior.

This kind of exploration doesn’t only cover language features and built-in functions. Sure,
it’s useful to be able to find out exactly how, say, the iter function works, but even more important
is the ability to easily create a prototype of the program you are about to write, just to see how
that works.

■Note In this context, the word prototype means a tentative implementation, a mock-up that implements
the main functionality of the final program, but which may have to be completely rewritten at some later
stage. Or not. Quite often what started out as a prototype can be turned into a working program.

After you have put some thought into the structure of your program (such as which classes
and functions you need), I suggest implementing a simple version of it, possibly with very
limited functionality. You’ll quickly notice how much easier the process becomes when you
have a running program to play with. You can add features, change things you don’t like, and

C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G 383

so on; you can really see how it works, instead of just thinking about it or drawing diagrams
on paper.

You can use prototyping in any programming language, but the strength of Python is that
writing a mock-up is a very small investment, so you’re not committed to using it. If you find
that your design wasn’t as clever as it could have been, you can simply toss out your prototype
and start from scratch. The process might take a few hours, or a day or two. If you were program-
ming in C++, for example, much more work would probably be involved in getting something
up and running, and discarding it would be a major decision. By committing to one version,
you lose flexibility; you get locked in by early decisions that may prove wrong in light of the
real-world experience you get from actually implementing it.

In the projects that follow, I consistently use prototyping instead of detailed analysis and
design up front. Every project is divided into two implementations. The first is a fumbling
experiment in which I’ve thrown together a program that solves the problem (or possibly only
a part of the problem) in order to learn about the components needed and what’s required of a
good solution. The greatest lesson will probably be seeing all the flaws of the program in action.

By building on this newfound knowledge, we take another, hopefully more informed, whack
at it. Of course, you should feel free to revise the code or even start afresh a third time. Usually,
starting from scratch doesn’t take as much time as one might think. If you have already thought
through the practicalities of the program, the typing shouldn’t take too long. (On the other
hand, there are a few ailments to watch out for . . . The “second system syndrome” is the tendency
to try to make the second version so clever or perfect that it’s never finished. The “continual
rewriting syndrome,” also known from fiction writing, is the tendency to keep fiddling with
your program, perhaps starting from scratch again and again. At some point, leaving well enough
alone may be the best strategy—just get something that works.)

Configuration
In this section, I return to the ever important principle of abstraction. In Chapters 6 and 7, I showed
you how to abstract away code by putting it in functions and methods, and hiding larger structures
inside classes. Let’s take a look at another, much simpler, way of introducing abstraction in your
program: extracting symbolic constants from your code.

Extracting Constants
By constants I mean built-in literal values such as numbers, strings, and lists. Instead of writing
these repeatedly in your program, you can gather them in global variables. I know I’ve been
warning you about those, but problems with global variables occur primarily when you start
changing them, because it can be difficult to keep track of which part of your code is responsible for
which change. I’ll leave these variables alone, however, and use them as if they were constant
(hence the term “symbolic constants”). To signal that a variable is to be treated as a symbolic
constant, you can use a special naming convention, using only capital letters in their variable
names, separating words with underscores.

Let’s take a look at an example. In a program that calculates the area and circumference of
circles, you could keep writing 3.14 every time you needed the value π. But what if you, at some
later time, wanted a more exact value, say 3.14159? You would have to search through the code
and replace the old value with the new. Not very hard, and in most good text editors it could be
done automatically. However, what if you had started out with the value 3? Would you later

384 C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G

want to replace every occurrence of the number 3 with 3.14159? Hardly. A much better way of
handling this would be to start the program with the line

PI = 3.14

and then use the name PI instead of the number itself. That way you could simply change this
single line to get a more exact value at some later time. Just keep this in the back of your mind:
Whenever you write a constant (such as the number 42 or the string “Hello, world!”) more than
once consider placing it in a global variable instead.

■Note Actually, the value of π is found in the math module, under the name math.pi:

>> from math import pi
>> pi
3.1415926535897931

This may seem agonizingly obvious to you—no problem. The real point of all this comes
in the next section . . .

Configuration Files
Extracting constants for your own benefit is one thing; but some constants can even be exposed
to your users. For example, if they don’t like the background color of your GUI program, perhaps
you should let them use another color. Or perhaps you could let users decide what greeting
message they would like to get when they start your exciting arcade game or the default starting
page of the new Web browser you just implemented.

Instead of putting these configuration variables at the top of one of your modules, you can
put them in a separate file. The simplest way of doing this is to have a separate module for
configuration. For example, if PI was set in the module file config.py, you could (in your main
program) do the following:

from config import PI

Then, if the user wants a different value for PI, he or she can simply edit config.py without
having to wade through your code.

Another possibility is to use the standard library module ConfigParser, which will allow
you to use a reasonably standard format for configuration files. It allows both standard Python
assignment syntax, such as

greeting = 'Hello, world!'

(although this would give you two extraneous quotes in your string) and another configuration
format used in many programs:

greeting: Hello, world!

You have to divide the configuration file into sections, using headers such as [files] or
[colors]. The names can be anything, but you have to enclose them in brackets. A sample
configuration file is shown in Listing 19-1, and a program using it is shown in Listing 19-2.

C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G 385

For more information on the features of the ConfigParser module, you should consult the
library documentation (http://python.org/doc/lib/module-ConfigParser.html).

Listing 19-1. A Simple Configuration File

[numbers]

pi: 3.1415926535897931

[messages]

greeting: Welcome to the area calculation program!
question: Please enter the radius:
result_message: The area is

Listing 19-2. A Program Using ConfigParser

from ConfigParser import ConfigParser

config = ConfigParser()
Read the configuration file:
config.read('c:/python/config.txt')

Print out an initial greeting;
'messages' is the section to look in:
print config.get('messages', 'greeting')

Read in the radius, using a question from the config file:
radius = input(config.get('messages', 'question') + ' ')

Print a result message from the config file;
end with a comma to stay on same line:
print config.get('messages', 'result_message'),

getfloat() converts the config value to a float:
print config.getfloat('numbers', 'pi') * radius**2

I won’t go into much detail about configuration in the following projects, but I suggest you
think about making your programs highly configurable. That way, the user can adapt the program
to his or her taste, which can make using it more pleasurable. After all, one of the main frustrations
of using software is that you can’t make it behave the way you want it to.

Logging
Somewhat related to testing (discussed in Chapter 16), and quite useful when furiously reworking
the innards of a program, logging can certainly help you discover problems and bugs. Logging
is basically collecting data about your program as it runs, so you can examine it afterward (or as

386 C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G

the data accumulate, for that matter). A very simple form of logging can be done with the print
statement. Just put a statement like this at the beginning of your program:

log = open('logfile.txt', 'w')

You can then later put any interesting information about the state of your program into
this file as follows:

print >> log, ('Downloading file from URL %s' % url)
text = urllib.urlopen(url).read()
print >> log, 'File successfully downloaded'

This approach won’t work well if your program crashes during the download. It would be
safer if you opened and closed your file for every log statement (or, at least, flushed the file after
writing). Then, if your program crashed, you could see that the last line in your log file said
“Downloading file from . . .” and you would know that the download wasn’t successful.

The way to go, actually, is using the logging module in the standard library. Basic usage is
pretty straightforward, as demonstrated by the program in Listing 19-3.

Listing 19-3. A Program Using the logging Module

import logging

logging.basicConfig(level=logging.INFO, filename='mylog.log')

logging.info('Starting program')

logging.info('Trying to divide 1 by 0')

print 1 / 0

logging.info('The division succeeded')

logging.info('Ending program')

Running that program would result in the following log file (called mylog.log):

INFO:root:Starting program
INFO:root:Trying to divide 1 by 0

As you can see, nothing is logged after trying to divide 1 by 0 because this error effectively
kills the program. Because this is such a simple error, you can tell what is wrong by the exception
traceback that prints as the program crashes. However, the most difficult type of bug to track
down is one that doesn’t stop your program but simply makes it behave strangely. Examining
a detailed log file may help you find out what’s going on.

C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G 387

The log file in this example isn’t very detailed, but by configuring the logging module
properly you can get log entries of different types (information, debug info, warnings, custom
types . . .) or just relating to certain parts of your program, information about time and date and
so forth. (You can even log to different locations, such as sockets.) You can also configure the
logger to filter out some or most of the logging, so you get only what you need at any one time,
without rewriting the program. Per default, only warnings are let through (which is why I had
to explicitly set the level to logging.INFO). The logging module is quite sophisticated, and there
is lots to be learned in the documentation (http://python.org/doc/lib/module-logging.html).

If You Can’t Be Bothered
“All this is well and good,” you may think, “but there’s no way I’m going to put that much effort
into writing a simple little program. Configuration, testing, logging—it sounds really boring.”

Well, that’s fine. You may not need it for simple programs. And even if you’re working on
a larger project, you may not really need all of this at the beginning. I would say that the minimum
is that you have some way of testing your program (as discussed in Chapter 16), even if it’s not
based on automatic unit tests. For example, if you’re writing a program that automatically
makes you coffee, you should have a coffee pot around, to see if it works.

In the project chapters that follow, I don’t write full test suites, intricate logging facilities,
and so forth. I present you with some simple test cases to demonstrate that the programs work,
and that’s it. If you find the core idea of a project interesting, you should take it further—try to
enhance and expand it. And in the process, you should consider the issues you read about in
this chapter. Perhaps a configuration mechanism would be a good idea? Or a more extensive
test suite? It’s up to you.

I WANT TO LEARN MORE . . .

Just in case you want more information on the art, craft, and philosophy of programming, here are some books
that discuss these things more in depth; even if you don’t read every page of every book (I know I haven’t), just
browsing in a few of these can give you quite a lot of insight:

• The Pragmatic Programmer, by Andrew Hunt and David Thomas (Addison-Wesley, 2000)

• Refactoring, by Kent Beck et al. (Addison-Wesley, 1999)

• Design Patterns, by the “Gang of Four,” Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
(Addison-Wesley, 1995)

• Test-Driven Development: By Example, by Kent Beck (Addison-Wesley, 2002)

• The Art of UNIX Programming, by Eric S. Raymond (Addison-Wesley, 2003)

• Introduction to Algorithms, Second Edition, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
Clifford Stein (MIT Press, 2001)

• The Art of Computer Programming, Volumes 1–3, by Donald Knuth (Addison-Wesley, 1998)

388 C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G

Project Structure
Now, about those projects . . . All the projects follow more or less the same structure, with the
following sections:

• What’s the problem? In this section the main goals of the project are outlined, including
some background information.

• Useful tools. Here, I describe modules, classes, functions, and so on that might be useful
for the project.

• Preparations. Here we perform any preparations necessary before starting to program.
This may include setting up the necessary framework for testing the implementation.

• First implementation. This is the first whack—a tentative implementation to learn more
about the problem.

• Second implementation. After the first implementation, you will probably have a better
understanding of things, which will enable you to create a new and improved version.

• Further exploration. Finally, I give pointers for further experimentation and exploration.

A Quick Summary
In this chapter, I described some general principles and techniques for programming in Python,
conveniently lumped under the heading “Playful Programming.” Here are the highlights:

Flexibility. When designing and programming, you should aim for flexibility. Instead of
clinging to your initial ideas, you should be willing to, and even prepared to, revise and
change every aspect of your program as you gain insight into the problem at hand.

Prototyping. One important technique for learning about a problem and possible imple-
mentations is to write a simple version of your program to see how it works. In Python, this
is so easy that you can write several prototypes in the time it takes to write a single version
in many other languages.

Configuration. Extracting constants from your program makes it easier to change them at
some later point. Putting them in a configuration file makes it possible for your user to
configure the program to behave like he or she wants it to.

Logging. Logging can be quite useful for uncovering problems with your program—or just
to monitor its ordinary behavior. You can implement simple logging yourself, using the
print statement, but the safest bet is to use the logging module from the standard library.

Project structure. All ten projects have a similar structure. First, the problem is outlined
along with some useful tools for solving it. Then, after the necessary preparations (such as
setting up tests), I present two successive implementations. Finally, I give pointers for
further exploration.

C H A P T E R 1 9 ■ P L A Y F U L P R O G R A M M I N G 389

What Now?
Indeed, what now? Now is the time to take the plunge and really start programming. It’s time
for the projects.

391

■ ■ ■

C H A P T E R 2 0

Project 1: Instant Markup

In this project, you see how to use Python’s excellent text processing capabilities, including
the capability to use regular expressions to change a plain text file into one marked up in a
language such as HTML or XML. You need such skills if you want to use text written by people
who don’t know these languages in a system that requires the contents to be marked up.

Let’s start by implementing a simple prototype that does the basic processing, and then
extend that program to make the markup system more flexible.

ALPHABET SOUP

Don’t speak fluent XML? Don’t worry about that—if you have only a passing acquaintance with HTML, you’ll
do fine in this chapter. If you need an introduction to HTML, I suggest you take a look at Dave Raggett’s excellent
guide “Getting Started with HTML” at the World Wide Web Consortium’s Web site (http://www.w3.org/
MarkUp/Guide). For more information about XML, see Chapter 22.

What’s the Problem?
You want to add some formatting to a plain text file. Let’s say you’ve been handed the file from
someone who can’t be bothered with writing in HTML, and you need to use the document as a
Web page. Instead of adding all the necessary tags manually, you want your program to do it
automatically.

Your task is basically to classify various text elements, such as headlines and emphasized
text, and then clearly mark them. In the specific problem addressed here, you add HTML markup
to the text, so the resulting document can be displayed in a Web browser and used as a Web
page. However, once you have built your basic engine, there is no reason why you can’t add
other kind of markup (such as various forms of XML or perhaps codes). After analyzing a
text file, you can even perform other tasks, such as extracting all the headlines to make a table
of contents.

ALTEX

392 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

WHAT IS ?

You don’t have to worry about it while working on this project—but is another markup system (based
on the typesetting program) for creating various types of technical documents. I mention it here only as
an example of what other uses your program may be put to. If you want to know more, you can visit the
Users Group home page at http://www.tug.org.

The text you’re given may contain some clues (such as emphasized text being marked
like this), but you’ll probably need some ingenuity in making your program guess how the
document is structured.

Specific Goals
Before starting to write your prototype, let’s define some goals:

• The input shouldn’t be required to contain artificial codes or tags.

• You should be able to deal both with different blocks, such as headings, paragraphs, and
list items, as well as inline text, such as emphasized text or URLs.

• Although this implementation deals with HTML, it should be easy to extend it to other
markup languages.

You may not be able to reach these goals fully in the first version of your program, but
that’s what it’s for: You write the prototype to find flaws in your original ideas and to learn more
about how to write a program that solves your problem.

Useful Tools
Consider what tools might be needed in writing this program. You certainly need to read from
and write to files (see Chapter 11), or at least read from standard input (sys.stdin) and output
with print. You probably need to iterate over the lines of the input (see Chapter 11); you need
a few string methods (see Chapter 3); perhaps you’ll use a generator or two (see Chapter 9); and
you probably need the re module (see Chapter 10). If any of these concepts seem unfamiliar to
you, you should perhaps take a moment to refresh your memory.

Preparations
Before you start coding, you need some way of assessing your progress; you need a test suite.
In this project, a single test may suffice: a test document (in plain text). Listing 20-1 contains a
sample text that you want to mark up automatically.

ALTEX

ALTEX
XET

XET

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 393

Listing 20-1. A Sample Plain Text Document (test_input.txt)

Welcome to World Wide Spam, Inc.

These are the corporate web pages of *World Wide Spam*, Inc. We hope
you find your stay enjoyable, and that you will sample many of our
products.

A short history of the company

World Wide Spam was started in the summer of 2000. The business
concept was to ride the dot-com wave and to make money both through
bulk email and by selling canned meat online.

After receiving several complaints from customers who weren't
satisfied by their bulk email, World Wide Spam altered their profile,
and focused 100% on canned goods. Today, they rank as the world's
13,892nd online supplier of SPAM.

Destinations

From this page you may visit several of our interesting web pages:

 - What is SPAM? (http://wwspam.fu/whatisspam)

 - How do they make it? (http://wwspam.fu/howtomakeit)

 - Why should I eat it? (http://wwspam.fu/whyeatit)

How to get in touch with us

You can get in touch with us in *many* ways: By phone (555-1234), by
email (wwspam@wwspam.fu) or by visiting our customer feedback page
(http://wwspam.fu/feedback).

To test your implementation, you need only to use this document as input and view the
results in a Web browser—or perhaps examine the added tags directly.

394 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

First Implementation
One of the first things you need to do is split the text into paragraphs. It’s obvious from Listing 20-1
that the paragraphs are separated by one or more empty lines. A better word than “paragraph”
might be “block” because this name can apply to headlines and list items as well.

A simple way to find these blocks is to collect all the lines you encounter until you find an
empty line, and then return the lines you have collected so far. That would be one block. Then,
you could start all over again. You needn’t bother collecting empty lines, and you won’t return
empty blocks (where you have encountered more than one empty line). Also, you should make
sure that the last line of the file is empty; otherwise you won’t know when the last block is
finished. (There are other ways of finding out, of course.)

Listing 20-2 shows an implementation of this approach.

Listing 20-2. A Text Block Generator (util.py)

from __future__ import generators

def lines(file):
 for line in file: yield line
 yield '\n'

def blocks(file):
 block = []
 for line in lines(file):
 if line.strip():
 block.append(line)
 elif block:
 yield ''.join(block).strip()
 block = []

The lines generator is just a little utility that tucks an empty line onto the end of the file.
The blocks generator implements the approach described. When a block is yielded, its lines are
joined, and the resulting string is stripped, giving you a single string representing the block,
with excessive whitespace at either end (such as list indentations or newlines) removed.

■Note The from __future__ import generators statement is necessary in Python version 2.2, but
not in 2.3 or 2.4. See also the section “Avoiding Generators” in Chapter 9.

I’ve put the code in the file util.py, which means that you can import the utility generators
in your program later on.

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 395

Adding Some Markup
With the basic functionality from Listing 20-2, you can create a simple markup script. The basic
steps of this program are as follows:

1. Print some beginning markup.

2. For each block, print the block enclosed in paragraph tags.

3. Print some ending markup.

This isn’t very difficult, but it’s not extremely useful either. Let’s say that instead of enclosing
the first block in paragraph tags, you enclose it in top heading tags (h1). Also, you replace any
text enclosed in asterisks with emphasized text (using em tags). At least that’s a bit more useful.
Given the blocks function, and using re.sub, the code is very simple. See Listing 20-3.

Listing 20-3. A Simple Markup Program (simple_markup.py)

from __future__ import generators
import sys, re
from util import *

print '<html><head><title>...</title><body>'

title = 1
for block in blocks(sys.stdin):
 block = re.sub(r'*(.+?)*', r'\1', block)
 if title:
 print '<h1>'
 print block
 print '</h1>'
 title = 0
 else:
 print '<p>'
 print block
 print '</p>'

print '</body></html>'

This program can be executed on the sample input as follows:

$ python simple_markup.py < test_input.txt > test_output.html

The file test_output.html will then contain the generated HTML code. Figure 20-1 shows
how this HTML code looks in a Web browser.

396 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

Figure 20-1. The first attempt at generating a Web page

Although not very impressive, this prototype does perform some important tasks: It divides
the text into blocks that can be handled separately, and it applies a filter (consisting of a call to
re.sub) to each block in turn. This seems like a good approach to use in your final program.

Now what would happen if you tried to extend this prototype? You would probably add
checks inside the for loop to see whether the block was a heading, a list item, or something
else. You would add more regular expressions. It could quickly grow into a mess—and, more
importantly, it would be very difficult to make it output anything other than HTML; and one of
the goals of this project is to make it easy to add other output formats.

Second Implementation
So, what did you learn from this first implementation? To make it more extensible, you need to
make your program more modular (divide the functionality into independent components).
One way of achieving modularity is through object-oriented design (see Chapter 7). You need
to find some abstractions to make your program more manageable as its complexity grows.
Let’s begin by listing some possible components:

• A parser. An object that reads the text and manages the other classes.

• Rules. You can make one rule for each type of block, which is able to detect the applicable
block type and to format it appropriately.

• Filters. Use filters to wrap up some regular expressions to deal with inline elements.

• Handlers. The parser uses handlers to generate output. Each handler can produce a
different kind of markup.

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 397

Although this isn’t a very detailed design, at least it gives you some ideas about how to
divide your code into smaller parts and make each part manageable.

Handlers
Let’s begin with the handlers. A handler is responsible for generating the resulting marked-up
text, but it receives detailed instructions from the parser. Let’s say it has a pair of methods for
each block type—one for starting the block, and one for ending it. For example, it might have
the methods start_paragraph and end_paragraph to deal with paragraph blocks. For HTML,
these could be implemented as follows:

class HTMLRenderer:
 def start_paragraph(self):
 print '<p>'
 def end_paragraph(self):
 print '</p>'

Of course, you’ll need more similar methods for other block types. (For the full code of the
HTMLRenderer class, see Listing 20-4 later in this chapter.) This seems flexible enough. If you
wanted some other type of markup, you would just make another handler (or renderer) with
other implementations of the start and end methods.

■Note The name Handler (as opposed to Renderer, for example) was chosen to indicate that it handles
the method calls generated by the parser (see also the following section, “A Handler Superclass”). It doesn’t
have to render the text in some markup language, as HTMLRenderer does. A similar handler mechanism is
used in the XML parsing scheme called SAX, which is explained in Chapter 22.

How do you deal with regular expressions? As you may recall, the re.sub function can take
a function as its second argument (the replacement). This function is called with the match
object, and its return value is inserted into the text. This fits nicely with the handler philosophy
discussed previously—you just let the handlers implement the replacement methods. For
example, emphasis can be handled like this:

 def sub_emphasis(self, match):
 return '%s' % match.group(1)

If you don’t understand what the group method does, perhaps you should take another
look at the re module, described in Chapter 10.

In addition to the start, end, and sub methods, you’ll have a method called feed, which
you use to feed actual text to the handler. In your simple HTML renderer, you’ll just implement
it like this:

 def feed(self, data):
 print data

398 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

A Handler Superclass
In the interest of flexibility, let’s add a Handler class, which will be the superclass of your handlers
and which will take care of some administrative details. Instead of having to call the methods
by their full name (for example, start_paragraph), it may at times be useful to handle the block
types as strings (for example, 'paragraph') and supply the handler with those. You can do this
by adding some generic methods called start(type), end(type), and sub(type). In addition,
you can make start, end, and sub check whether the corresponding methods (such as
start_paragraph for start('paragraph')) are really implemented and do nothing if no such
method is found. An implementation of this Handler class follows. (This code is taken from the
module handlers shown in Listing 20-4.)

class Handler:
 def callback(self, prefix, name, *args):
 method = getattr(self, prefix+name, None)
 if callable(method): return method(*args)
 def start(self, name):
 self.callback('start_', name)
 def end(self, name):
 self.callback('end_', name)
 def sub(self, name):
 def substitution(match):
 result = self.callback('sub_', name, match)
 default = match.group(0)
 return result or default
 return substitution

■Note This code requires nested scopes, which are not available prior to Python 2.1. If, for some reason,
you’re using Python 2.1, you need to add the line from __future__ import nested_scopes at the top
of the handlers module. (To some degree, nested scopes can be simulated with default arguments. See the
sidebar “Nested Scopes” in Chapter 6.)

Several things in this code warrant some explanation.
Thecallback method is responsible for finding the correct method (such as start_paragraph),

given a prefix (such as 'start_') and a name (such as 'paragraph'), and it performs its task by
using getattr with None as the default value. If the object returned from getattr is callable, it is
called with any additional arguments supplied. So, for example, calling handler.callback➥

('start_', 'paragraph') calls the method handler.start_paragraph with no arguments, given
that it exists.

The start and end methods are just helper methods that call callback with the respective
prefixes start_ and end_.

The sub method is a bit different. It doesn’t call callback directly, but returns a new func-
tion, which is used as the replacement function in re.sub (which is why it takes a match object

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 399

as its only argument). Confusing? Let’s consider an example (and don’t worry about the default
part yet—I’ll get to that).

Let’s say HTMLRenderer is a subclass of Handler and it implements the method sub_emphasis
as described in the previous section (see Listing 20-4 for the actual code of handlers.py). Let’s
say you have an HTMLRenderer instance in the variable handler:

>>> from handlers import HTMLRenderer
>>> handler = HTMLRenderer()

What then will handler.sub('emphasis') do?

>>> handler.sub('emphasis')
<function substitution at 0x168cf8>

It returns a function (substitution) that basically calls the handler.sub_emphasis method
when you call it. That means that you can use this function in a re.sub statement:

>>> import re
>>> re.sub(r'*(.+?)*', handler.sub('emphasis'), 'This *is* a test')
'This is a test'

Magic! (The regular expression matches occurrences of text bracketed by asterisks, which
I’ll discuss shortly.) But why go to such lengths? Why not just use r'\1' as I did in the
simple version? Because then you’d be committed to using the em tag—and you want the handler
to be able to decide what markup to use. If your handler were a (hypothetical) LaTeXRenderer,
for example, you might get another result altogether:

>> re.sub(r'*(.+?)*', handler.sub('emphasis'), 'This *is* a test')
'This \emph{is} a test'

The markup has changed, but the code has not.
Now, what about that default part of the replacement function? What’s that all about? It’s

a backup, in case no substitution is implemented. The callback method tries to find a suitable
sub_something method, but if it doesn’t find one, it returns None. Because your function is a
re.sub replacement function, you don’t want it to return None. Instead, if you find no substitu-
tion method, you just return the original match without any modifications. Due to short-circuit
logic (see Chapter 5), if the callback returns None, the lambda (in sub) returns default (which is
match.group(0)) instead, which is the original matched text.

Rules
Now that I’ve made the handlers quite extensible and flexible, it’s time to turn to the parsing (inter-
pretation of the original text). Instead of making one big if statement with various conditions and
actions such as in my simple markup program, I’ll make the rules a separate kind of object.

The rules are used by the main program (the parser), which must determine which rules
are applicable for a given block, and then make each rule do what is needed to transform the
block. In other words, a rule must

• Be able to recognize blocks where it applies (the condition)

• Be able to transform blocks (the action)

400 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

So each rule object must have two methods, condition and action.
The condition method needs only one argument—the block in question. It should return

a Boolean value indicating whether the rule is applicable to the given block.
The action method also needs the block as an argument, but to be able to affect the output,

it must also have access to the handler object.
In many circumstances, only one rule may be applicable. That is, if you find that a headline

rule is used (indicating that the block is a headline), you should not attempt to use the paragraph
rule. A simple implementation of this would be to have the parser try the rules one by one, and
stop the processing of the block once one of the rules is triggered. This would be fine in general,
but as you’ll see, sometimes a rule may not preclude the execution of other rules. Therefore, we
add another piece of functionality to your action method: It returns a Boolean value indicating
whether the rule processing for the current block should stop or not. (You could also use an
exception for this, similarly to the StopIteration mechanism of iterators.)

Pseudocode for the headline rule might be as follows:

class HeadlineRule:
 def condition(self, block):
 if the block fits the definition of a headline, return True;
 otherwise, return False.
 def action(self, block, handler):
 call methods such as handler.start('headline'), handler.feed(block) and
 handler.end('headline').
 because we don't want to attempt to use any other rules,
 return True, which will end the rule processing for this block.

A Rule Superclass
Although you don’t strictly need a common superclass for your rules, several of them may
share the same general action—calling the start, feed, and end methods of the handler with
the appropriate type string argument, and then returning True (to stop the rule processing).
Assuming that all the subclasses have an attribute called type containing this type name as a
string, you can implement your superclass as shown in the code that follows. (The Rule class is
found in the rules module—the full code is shown later in Listing 20-5.)

class Rule:
 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block)
 handler.end(self.type)
 return True

The condition method is the responsibility of each subclass. The Rule class and its subclasses
are put in the rules module.

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 401

Filters
You won’t need a separate class for your filters. Given the sub method of your Handler class,
each filter can be represented by a regular expression and a name (such as emphasis or url).
You see how in the next section, when I show you how to deal with the parser.

The Parser
We’ve come to the heart of the application—the Parser class. It uses a handler and a set of rules
and filters to transform a plain text file into a marked-up file—in this specific case, an HTML
file. Which methods does it need? It needs a constructor to set things up, a method to add rules,
a method to add filters, and a method to parse a given file.

You can see code for the Parser class later in Listing 20-6, which details markup.py. (Let’s
just worry about the Parser class for now—I’ll get to the rest soon enough.)

Although there is quite a lot to digest in this class, most of it isn’t very complicated. The
constructor simply stores the supplied handler as an instance variable (attribute) and then
initializes two lists—one of rules, and one of filters. The addRule method simply adds a rule to
the rule list. The addFilter method does a bit more work. Like addRule, it adds a filter to the
filter list—but before doing so, it creates that filter. The filter is simply a function that applies
re.sub with the appropriate regular expression (pattern) and uses a replacement from the
handler, accessed with handler.sub(name).

The parse method—although it might look a bit complicated—is perhaps the easiest method
to implement because it merely does what you’ve been planning to do all along. It begins by
calling start('document') on the handler, and ends by calling end('document'). Between these
calls it iterates over all the blocks in the text file.

For each block it applies both the filters and the rules. Applying a filter is simply a matter
of calling the filter function with the block and handler as arguments, and rebinding the
block variable to the result, as follows:

block = filter(block, self.handler)

This enables each of the filters to do its work, which is replacing parts of the text with
marked-up text (such as replacing *this* with this).

There is a bit more logic in the rule loop. For each rule there is an if statement, checking
whether the rule applies by calling rule.condition(block). If the rule applies, rule.action is
called with the block and handler as arguments. Remember that the action method returns a
Boolean value indicating whether to finish the rule application for this block. Finishing the rule
application is done by setting the variable last to the return value of action, and then condi-
tionally breaking out of the for loop with

if last: break

402 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

■Note You can collapse these two statements into one, eliminating the last variable:

if rule.action(block, self.handler): break

Whether or not to do so is largely a matter of taste. Removing the temporary variable makes the code simpler,
while leaving it in clearly labels the return value.

Constructing the Rules and Filters
Now you have all the tools you need, but you haven’t created any specific rules or filters yet.
The motivation behind much of the code you’ve written so far is to make the rules and filters as
flexible as the handlers. You can write several independent rules and filters and add them to
your parser through the addRule and addFilter methods, making sure to implement the appro-
priate methods in your handlers.

A complicated ruleset makes it possible to deal with complicated documents. However,
let’s keep it simple for now: Let’s create one rule for the title, one rule for other headings, and
one for list items. Because list items should be treated collectively as a list, you’ll create a separate
list rule, which deals with the entire list. Lastly, you can create a default rule for paragraphs,
which covers all blocks not dealt with by the previous rules.

We can specify the rules in informal terms as follows:

• A heading is a block that consists of only one line, which has a length of at most
70 characters. If the block ends with a colon, it is not a heading.

• The title is the first block in the document, provided that it is a heading.

• A list item is a block that begins with a hyphen (-).

• A list begins between a block that is not a list item and a following list item and ends
between a list item and a following block that is not a list item.

These rules follow some of my intuitions about how a text document is structured. Your
opinions on this (and your text documents) may differ. Also, the rules have weaknesses (for
example, what happens if the document ends with a list item?)—feel free to improve on them.

The source code for the rules is shown in later in Listing 20-5 (rules.py, which also contains
the basic Rule class).

Let’s begin with the heading rule. The attribute type has been set to the string 'heading',
which is used by the action method inherited from Rule. The condition simply checks that the
block does not contain a newline (\n) character, that its length is at most 70, and that the last
character is not a colon.

The title rule is similar, but only works once—for the first block. After that, it ignores all
blocks because its attribute first has been set to a false value.

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 403

The list item rule condition is a direct implementation of the preceding specification. Its
condition is a reimplementation of that found in Rule; the only difference is that it removes the
first character from the block (the hyphen) and strips away excessive whitespace from the
remaining text. The markup provides its own “list bullet,” so you won’t need the hyphen anymore.

All the rule actions so far have returned True. The list rule does not, because it is triggered
when you encounter a list item after a nonlist item or when you encounter a nonlist item after
a list item. Because it doesn’t actually mark up these blocks but merely indicates the beginning
and end of a list (a group of list items) you don’t want to halt the rule processing—so it returns
False.

The list rule requires further explanation. Its condition is always true because you want to
examine all blocks. In the action method you have two alternatives that may lead to action:

• If the attribute inside (indicating whether the parser is currently inside the list) is false
(as it is initially), and the condition from the list item rule is true, you have just entered a
list. Call the appropriate start method of the handler, and set the inside attribute to True.

• Conversely, if inside is true, and the list item rule condition is false, you have just left a list.
Call the appropriate end method of the handler, and set the inside attribute to False.

After this processing, the function returns False to let the rule handling continue. (This
means, of course, that the order of the rule is critical.)

The final rule is ParagraphRule. Its condition is always true because it is the “default” rule.
It is added as the last element of the rule list, and handles all blocks that aren’t dealt with by any
other rule.

The filters are simply regular expressions. Let’s add three filters—one for emphasis, one
for URLs, and one for email addresses. Let’s use the following three regular expressions:

r'*(.+?)*'
r'(http://[\.a-zA-Z/]+)'
r'([\.a-zA-Z]+@[\.a-zA-Z]+[a-zA-Z]+)'

The first pattern (emphasis) matches an asterisk followed by one or more arbitrary charac-
ters (matching as few as possible—hence the question mark), followed by another asterisk. The
second pattern (URLs) matches the string 'http://' (here you could add more protocols)
followed by one or more characters that are either dots, letters, or slashes. (This pattern will not
match all legal URLs—feel free to improve it.) Finally, the email pattern matches a sequence of
letters and dots followed by an “at” sign (@) followed by more letters and dots, finally followed by
a sequence of letters, ensuring that you don’t end with a dot. (Again—feel free to improve this.)

Putting It All Together
You now have only to create a Parser object and add the relevant rules and filters. Let’s do that
by creating a subclass of Parser that does the initialization in its constructor. Then let’s use that
to parse sys.stdin. The final program is shown in Listings 20-4 through 20-6. (These listings
depend on the utility code in Listing 20-2.) The final program may be run just like the prototype:

$ python markup.py < test_input.txt > test_output.html

404 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

Listing 20-4. The Handlers (handlers.py)

class Handler:
 """
 An object that handles method calls from the Parser.

 The Parser will call the start() and end() methods at the
 beginning of each block, with the proper block name as
 parameter. The sub() method will be used in regular expression
 substitution. When called with a name such as 'emphasis', it will
 return a proper substitution function.
 """
 def callback(self, prefix, name, *args):
 method = getattr(self, prefix+name, None)
 if callable(method): return method(*args)
 def start(self, name):
 self.callback('start_', name)
 def end(self, name):
 self.callback('end_', name)
 def sub(self, name):
 return lambda match: self.callback('sub_', name, match) or match.group(0)

class HTMLRenderer(Handler):
 """
 A specific handler used for rendering HTML.

 The methods in HTMLRenderer are accessed from the superclass
 Handler's start(), end(), and sub() methods. They implement basic
 markup as used in HTML documents.
 """
 def start_document(self):
 print '<html><head><title>...</title></head><body>'
 def end_document(self):
 print '</body></html>'
 def start_paragraph(self):
 print '<p>'
 def end_paragraph(self):
 print '</p>'
 def start_heading(self):
 print '<h2>'
 def end_heading(self):
 print '</h2>'
 def start_list(self):
 print ''
 def end_list(self):
 print ''

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 405

 def start_listitem(self):
 print ''
 def end_listitem(self):
 print ''
 def start_title(self):
 print '<h1>'
 def end_title(self):
 print '</h1>'
 def sub_emphasis(self, match):
 return '%s' % match.group(1)
 def sub_url(self, match):
 return '%s' % (match.group(1), match.group(1))
 def sub_mail(self, match):
 return '%s' % (match.group(1), match.group(1))
 def feed(self, data):
 print data

Listing 20-5. The Rules (rules.py)

class Rule:
 """
 Base class for all rules.
 """
 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block)
 handler.end(self.type)
 return True

class HeadingRule(Rule):
 """
 A heading is a single line that is at most 70 characters and
 that doesn't end with a colon.
 """
 type = 'heading'
 def condition(self, block):
 return not '\n' in block and len(block) <= 70 and not block[-1] == ':'

class TitleRule(HeadingRule):
 """
 The title is the first block in the document, provided that it is
 a heading.
 """
 type = 'title'
 first = True

406 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

 def condition(self, block):
 if not self.first: return False
 self.first = False
 return HeadingRule.condition(self, block)

class ListItemRule(Rule):
 """
 A list item is a paragraph that begins with a hyphen. As part of
 the formatting, the hyphen is removed.
 """
 type = 'listitem'
 def condition(self, block):
 return block[0] == '-'
 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block[1:].strip())
 handler.end(self.type)
 return 1

class ListRule(ListItemRule):
 """
 A list begins between a block that is not a list item and a
 subsequent list item. It ends after the last consecutive list
 item.
 """
 type = 'list'
 inside = False
 def condition(self, block):
 return True
 def action(self, block, handler):
 if not self.inside and ListItemRule.condition(self, block):
 handler.start(self.type)
 self.inside = True
 elif self.inside and not ListItemRule.condition(self, block):
 handler.end(self.type)
 self.inside = False
 return False

class ParagraphRule(Rule):
 """
 A paragraph is simply a block that isn't covered by any of the
 other rules.
 """
 type = 'paragraph'
 def condition(self, block):
 return True

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 407

Listing 20-6. The Main Program (markup.py)

import sys, re
from handlers import *
from util import *
from rules import *

class Parser:
 """
 A Parser reads a text file, applying rules and controlling a
 handler.
 """
 def __init__(self, handler):
 self.handler = handler
 self.rules = []
 self.filters = []
 def addRule(self, rule):
 self.rules.append(rule)
 def addFilter(self, pattern, name):
 def filter(block, handler):
 return re.sub(pattern, handler.sub(name), block)
 self.filters.append(filter)
 def parse(self, file):
 self.handler.start('document')
 for block in blocks(file):
 for filter in self.filters:
 block = filter(block, self.handler)
 for rule in self.rules:
 if rule.condition(block):
 last = rule.action(block, self.handler)
 if last: break
 self.handler.end('document')

class BasicTextParser(Parser):
 """
 A specific Parser that adds rules and filters in its
 constructor.
 """
 def __init__(self, handler):
 Parser.__init__(self, handler)
 self.addRule(ListRule())
 self.addRule(ListItemRule())
 self.addRule(TitleRule())
 self.addRule(HeadingRule())
 self.addRule(ParagraphRule())

408 C H A P T E R 2 0 ■ P R O J E C T 1 : I N S T A N T M A R K U P

 self.addFilter(r'*(.+?)*', 'emphasis')
 self.addFilter(r'(http://[\.a-zA-Z/]+)', 'url')
 self.addFilter(r'([\.a-zA-Z]+@[\.a-zA-Z]+[a-zA-Z]+)', 'mail')

handler = HTMLRenderer()
parser = BasicTextParser(handler)

parser.parse(sys.stdin)

You can see the result of running the program on the sample text in Figure 20-2.

Figure 20-2. The second attempt at generating a Web page

The second implementation is clearly more complicated and extensive than the first
version. The added complexity is well worth the effort because the resulting program is much
more flexible and extensible. Adapting it to new input and output formats is merely a matter of
subclassing and initializing the existing classes, rather than rewriting everything from scratch,
as you would have had to do in the first prototype.

Further Exploration
Several expansions are possible for this program. Here are some possibilities:

• Add support for tables. Find all aligning left word borders and split the block into columns.

• Add support for interpreting all uppercase words as emphasis. (To do this properly, you will
need to take into account acronyms, punctuations, names, and other capitalized words.)

C H A P T E R 2 0 ■ P R O J E CT 1 : I N S T A N T M A R K U P 409

• Write markup handlers for other markup languages (such as DocBook XML or).

• Write a handler that does something other than markup. Perhaps write a handler that
analyzes the document in some way.

• Create a script that automatically converts all text files in a directory to HTML files.

• Check out some existing plain-text formats (such as various forms of Wiki markup). One
list of several such formats and systems can be found in the documentation of the Atox
system (http://atox.sf.net).

What Now?
Phew! After this strenuous (but useful) project, it’s time for some lighter material. In the next
chapter, you create some graphics based on data that is automatically downloaded from the
Internet. Piece of cake.

ALTEX

411

■ ■ ■

C H A P T E R 2 1

Project 2: Painting a
Pretty Picture

In this project, you learn how you can create graphics in Python. More specifically, you create
a PDF file with graphics helping you visualize data that you read from a text file. While you
could get such functionality from a regular spreadsheet, Python gives you much more power,
as you’ll see when you get to the second implementation and automatically download your
data from the Internet.

ALPHABET SOUP REVISITED

In the previous chapter, we looked at HTML and XML—and here is another acronym: PDF, short for Portable
Document Format. PDF is a format created by Adobe that can represent any kind of document with graphics
and text. The PDF file is not editable (as, say, a Microsoft Word file would be), but there is reader software
freely available for most platforms, and the PDF file should look the same no matter which reader you use or
which platform you are on (as opposed to HTML, with which the correct fonts may not be available, you’d have
to ship pictures as separate files, and so on).

If you don’t already have a PDF reader, Adobe’s own Acrobat Reader is freely available from the Adobe
Web site (http://adobe.com/products/acrobat/readstep.html).

What’s the Problem?
Python is excellent for analyzing data. With its file handling and string processing facilities, it’s
probably easier to create some form of report from a data file than to create something similar
in your average spreadsheet, especially if what you want to do requires some complicated
programming logic.

You have seen (in Chapter 3) how you can use string formatting to get pretty output—for
example, if you want to print numbers in columns. However, sometimes plain text just isn’t
enough. (As they say, a picture is worth a thousand words.) In this project, you learn the basics
of the ReportLab package, which enables you to create graphics and documents in the PDF
format (and a few other formats) almost as easily as you created plain text earlier.

As you play with the concepts in this project, I encourage you to find some application that
is interesting to you. I have chosen to use data about sunspots (from the Space Environment

412 C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E

Center, a part of the U.S. National Oceanic and Atmospheric Administration) and to create a
line diagram from this data.

Specific Goals
The program should be able to do the following:

• Download a data file from the Internet.

• Parse the data file and extract the interesting parts.

• Create PDF graphics based on the data.

As in the previous project, these goals might not be fully met by the first prototype.

Useful Tools
The crucial tool in this project is the graphics-generating package. There are quite a few such
packages to choose from. If you visit the Vaults of Parnassus site (http://www.vex.net/parnassus),
you will find a separate category for graphics. I have chosen to use ReportLab because it is easy
to use and has extensive functionality for both graphics and document generation in PDF. If
you want to go beyond the basics, you might also want to consider the graphics package
(http://pyx.sf.net), which is really powerful, and has support for -based typography.

To get the ReportLab package, go to the official Web page at http://reportlab.org. There
you will find the software, documentation, and samples. The software should be available at
http://reportlab.org/downloads.html. Simply download the ReportLab toolkit, uncompress
the archive (ReportLab_X.zip, where X is a version number), and put the resulting directory in
your Python path.

When you have done this, you should be able to import the reportlab module, as follows:

>>> import reportlab
>>>

How Does It Work?
Although I show you how some ReportLab features work in this project, much more function-
ality is available. To learn more, I suggest you obtain the user guide and the (separate) graphics
guide, made available on the ReportLab Web site (on the documentation page). They are quite
readable, and are much more comprehensive than this one chapter could possibly be.

Preparations
Before we start programming, we need some data with which to test our program. I have chosen
(quite arbitrarily) to use data about sunspots, available from the Web site of the Space Environment
Center (http://www.sec.noaa.gov). You can find the data I use in my examples at http://
www.sec.noaa.gov/ftpdir/weekly/Predict.txt.

This data file is updated weekly and contains information about sunspots and radio flux.
(Don’t ask me what that means.) Once you’ve got this file, you’re ready to start playing with
the problem.

PYX
XET

C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E 413

Here is a part of the file to give you an idea of how the data looks:

Predicted Sunspot Number And Radio Flux Values
With Expected Ranges
#
-----Sunspot Number------ ----10.7 cm Radio Flux----
YR MO PREDICTED HIGH LOW PREDICTED HIGH LOW
#--
2004 12 34.2 35.2 33.2 100.6 101.6 99.6
2005 01 31.5 34.5 28.5 97.8 100.8 94.8
2005 02 28.8 33.8 23.8 94.5 99.5 89.5
2005 03 27.1 34.1 20.1 91.8 98.8 84.8
2005 04 24.9 32.9 16.9 89.2 98.2 80.2
2005 05 22.0 31.0 13.0 86.2 97.2 75.2
2005 06 20.3 30.3 10.3 83.6 96.6 70.6
2005 07 19.1 30.1 8.1 81.4 96.4 66.4
2005 08 17.4 29.4 5.4 79.1 96.1 62.1
2005 09 15.8 28.8 2.8 77.2 96.2 58.2

First Implementation
In this first implementation, let’s just put the data into our source code, as a list of tuples. That
way, it’s easily accessible. Here is an example of how you can do it:

data = [
Year Month Predicted High Low
 (2004, 12, 34.2, 35.2, 33.2),
 (2005, 1, 31.5, 34.5, 28.5),
 # Add more data here
]

With that out of the way, let’s see how you can turn the data into graphics.

Drawing with ReportLab
ReportLab consists of many parts and enables you to create output in several ways. The most
basic module for generating PDFs is pdfgen. It contains a Canvas class with several low-level
methods for drawing. To draw a line on a Canvas called c, you call the c.line method, for example.

We’ll use the more high-level graphics framework (in the package reportlab.graphics and
its submodules), which will enable us to create various shape objects and to add them to a
Drawing object that we can later output to a file in PDF format.

Listing 21-1 shows a sample program that draws the string “Hello, world!” in the middle of
a 100×100-point PDF figure. (You can see the result in Figure 21-1.) The basic structure is as
follows: You create a drawing of a given size, you create graphical elements (in this case, a
String object) with certain properties, and then you add the elements to the drawing. Finally,
the drawing is rendered into PDF and is saved to a file.

414 C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E

Listing 21-1. A Simple ReportLab Program

from reportlab.graphics.shapes import Drawing, String
from reportlab.graphics import renderPDF

d = Drawing(100, 100)
s = String(50, 50, 'Hello, world!', textAnchor='middle')

d.add(s)

renderPDF.drawToFile(d, 'hello.pdf', 'A simple PDF file')

The call to renderPDF.drawToFile saves your PDF file to a file called hello.pdf in the
current directory.

The main arguments to the String constructor are its x and y coordinates and its text. In
addition, you can supply various attributes (such as font size, color, and so on). In this case, I’ve
supplied a textAnchor, which is the part of the string that should be placed at the point given
by the coordinates.

■Note When you run this program, you may get two warnings: one saying that the Python Imaging Library
is not available, and the other that zlib is not available. (If you have installed either of these, that warning
will, of course, not appear.) You won’t need either of these libraries for the code in this project, so you can
simply ignore the warnings.

Figure 21-1. A simple ReportLab figure

C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E 415

Constructing Some PolyLines
To create a line diagram (a graph) of the sunspot data, you have to create some lines. In fact,
you have to create several lines that are linked. ReportLab has a special class for this: PolyLine.

A PolyLine is created with a list of coordinates as its first argument. This list is of the form
[(x0, y0), (x1, y1), ...], with each pair of x and y coordinates making one point on the
PolyLine. See Figure 21-2 for a simple PolyLine.

Figure 21-2. PolyLine([(0, 0), (10, 0), (10, 10), (0, 10)])

To make a line diagram, one polyline must be created for each column in the data set.
Each point in these polylines will consist of a time (constructed from the year and month) and
a value (which is the number of sunspots taken from the relevant column). To get one of the
columns (the values), list comprehensions can be useful:

pred = [row[2] for row in data]

Here pred (for “predicted”) will be a list of all the values in the third column of the data.
You can use a similar strategy for the other columns. (The time for each row would have to be
calculated from both the year and month: for example, year + month/12.)

Once you have the values and the time stamps, you can add your polylines to the drawing
like this:

drawing.add(PolyLine(zip(times, pred), strokeColor=colors.blue))

It isn’t necessary to set the stroke color, of course, but it makes it easier to tell the lines
apart. (Note how zip is used to combine the times and values into a list of tuples.)

416 C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E

The Prototype
You now have what you need to write your first version of the program. The source code is
shown in Listing 21-2.

Listing 21-2. The First Prototype for the Sunspot Graph Program

from reportlab.lib import colors
from reportlab.graphics.shapes import *
from reportlab.graphics import renderPDF

data = [
Year Month Predicted High Low
 (2005, 8, 113.2, 114.2, 112.2),
 (2005, 9, 112.8, 115.8, 109.8),
 (2005, 10, 111.0, 116.0, 106.0),
 (2005, 11, 109.8, 116.8, 102.8),
 (2005, 12, 107.3, 115.3, 99.3),
 (2006, 1, 105.2, 114.2, 96.2),
 (2006, 2, 104.1, 114.1, 94.1),
 (2006, 3, 99.9, 110.9, 88.9),
 (2006, 4, 94.8, 106.8, 82.8),
 (2006, 5, 91.2, 104.2, 78.2),
]

drawing = Drawing(200, 150)

pred = [row[2]-40 for row in data]
high = [row[3]-40 for row in data]
low = [row[4]-40 for row in data]
times = [200*((row[0] + row[1]/12.0) - 2005)-110 for row in data]

drawing.add(PolyLine(zip(times, pred), strokeColor=colors.blue))
drawing.add(PolyLine(zip(times, high), strokeColor=colors.red))
drawing.add(PolyLine(zip(times, low), strokeColor=colors.green))

drawing.add(String(65, 115, 'Sunspots', fontSize=18, fillColor=colors.red))

renderPDF.drawToFile(drawing, 'report1.pdf', 'Sunspots')

As you can see, I have adjusted the values and time stamps to get the positioning right. The
resulting drawing is shown in Figure 21-3.

C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E 417

Figure 21-3. A simple sunspot graph

Although it is pleasing to have made a program that works, there is clearly still room for
improvement.

Second Implementation
So, what did you learn from your prototype? You have figured out the basics of how to draw
stuff with ReportLab. You have also seen how you can extract the data in a way that works well
for drawing your graph. However, there are some weaknesses in the program. To position
things properly, I had to add some ad hoc modifications to the values and time stamps. And the
program doesn’t actually get the data from anywhere. (More specifically, it “gets” the data from
a list inside the program itself, rather than reading it from an outside source.)

Unlike Project 1 (in Chapter 20), the second implementation won’t be much larger or more
complicated than the first. It will be an incremental improvement that will use some more
appropriate features from ReportLab and actually fetch its data from the Internet.

Getting the Data
As you saw in Chapter 14, you can fetch files across the Internet with the standard module
urllib. Its function urlopen works in a manner quite similar to open, but takes a URL instead of
a file name as its argument. When you have opened the file and read its contents, you have to
filter out what you don’t need. The file contains empty lines (consisting of only whitespace)
and lines beginning with some special characters (# and :). The program should ignore these.
(See the example file fragment in the section “Preparations” earlier in this chapter.)

418 C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E

Assuming that the URL is kept in a variable called URL, and that the variable COMMENT_CHARS
has been set to the string '#:', you can get a list of rows (as in our original program) like this:

data = []
for line in urlopen(URL).readlines():
 if not line.isspace() and not line[0] in COMMENT_CHARS:
 data.append(map(float, line.split()))

The preceding code will include all the columns in the data list, although we aren’t partic-
ularly interested in the ones pertaining to radio flux. However, those columns will be filtered
out when we extract the columns we really need (as we did in the original program).

■Note If you are using a data source of your own (or if, by the time you read this, the data format of the
sunspot file has changed), you will, of course, have to modify this code accordingly.

Using the LinePlot Class
If you thought getting the data was surprisingly simple, drawing a prettier line plot isn’t much
of a challenge either. In a situation like this, it’s best to thumb through the documentation (in
this case, the ReportLab docs) to see if there is a feature already in the system that can do what
you need, so you don’t have to implement it all yourself. Luckily, there is just such a thing: the
LinePlot class from the module reportlab.graphics.charts.lineplots. Of course, we could
have looked for this to begin with, but in the spirit of rapid prototyping, we just used what was
at hand to see what we could do. Now it’s time to go one step further.

The LinePlot is instantiated without any arguments, and then you set its attributes before
adding it to the Drawing. The main attributes you need to set are x, y, height, width, and data.
The first four should be self-explanatory; the latter is simply a list of point-lists, where a point-
list is a list of tuples, like the one we used in our PolyLines.

To top it off, let’s set the stroke color of each line. The final code is shown in Listing 21-3.
The resulting figure is shown in Figure 21-4.

Listing 21-3. The Final Sunspot Program

from urllib import urlopen
from reportlab.graphics.shapes import *
from reportlab.graphics.charts.lineplots import LinePlot
from reportlab.graphics.charts.textlabels import Label
from reportlab.graphics import renderPDF

URL = 'http://www.sec.noaa.gov/ftpdir/weekly/Predict.txt'
COMMENT_CHARS = '#:'

drawing = Drawing(400, 200)
data = []

C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E 419

for line in urlopen(URL).readlines():
 if not line.isspace() and not line[0] in COMMENT_CHARS:
 data.append(map(float, line.split()))

pred = [row[2] for row in data]
high = [row[3] for row in data]
low = [row[4] for row in data]
times = [row[0] + row[1]/12.0 for row in data]

lp = LinePlot()
lp.x = 50
lp.y = 50
lp.height = 125
lp.width = 300
lp.data = [zip(times, pred), zip(times, high), zip(times, low)]
lp.lines[0].strokeColor = colors.blue
lp.lines[1].strokeColor = colors.red
lp.lines[2].strokeColor = colors.green

drawing.add(lp)

drawing.add(String(250, 150, 'Sunspots',
 fontSize=14, fillColor=colors.red))

renderPDF.drawToFile(drawing, 'report2.pdf', 'Sunspots')

Figure 21-4. The final sunspot graph

420 C H A P T E R 2 1 ■ P R O J E C T 2 : P A I N T I N G A P R E T T Y P I C T U R E

Further Exploration
As I mentioned before, many graphics and plotting packages are available for Python. One good
alternative to ReportLab is , which I have mentioned earlier in this chapter. It is also possible
to use wxPython (discussed in Chapter 12) to create vector graphics files of different kinds.

Using either ReportLab or (or some other package) you could try to incorporate auto-
matically generated graphics into a document (perhaps generating parts of that as well). You
could use some of the techniques from Chapter 20 to add markup to the text. If you want to
create a PDF document, Platypus, a part of ReportLab, is useful for that. (You could also inte-
grate the PDF graphics with some typesetting system such as pdf .) If you want to create
Web pages, there are ways of creating pixmap graphics (such as GIF or PNG) using Python as
well—just do a Web search on the topic.

If your primary goal is to plot data (which is what we did in this project), there are many
alternatives to ReportLab and . One good option is Matplotlib/pylab (http://matplotlib.
sf.net), but there are many, many other (similar) packages.

What Now?
In the first project, you learned how to add markup to a plain-text file by creating an extensible
parser. In the next project, you learn about analyzing marked-up text (in XML) by using parser
mechanisms that already exist in the Python standard library. The goal of the project is to use
a single XML file to specify an entire Web site, which will then be generated automatically (with
files, directories, added headers, and footers) by your program. The techniques you learn in the
next project will be applicable to XML parsing in general, and with XML being used in an
increasing number of different settings, that can’t hurt.

PYX

PYX

ALTEX

PYX

421

■ ■ ■

C H A P T E R 2 2

Project 3: XML for
All Occasions

I mentioned XML briefly in Project 1—now it’s time to examine it in more detail. In this project,
you see how XML can be used to represent many kinds of data, and how XML files can be processed
with the Simple API for XML, or SAX. The goal of this project is to generate a full Web site from
a single XML file that describes the various Web pages and directories.

INSTANT XML

In this chapter, I assume that you know what XML is and how to write it. If you know some HTML, you’re
already familiar with the basics. XML isn’t really a specific language (such as HTML); it’s more like a set of
rules that define a class of languages. Basically, you still write tags the same way as in HTML, but in XML you
can invent tag names yourself. Such specific sets of tag names and their structural relationships can be
described in Document Type Definitions or XML Schema—I won’t be discussing those here.

For a concise description of what XML is, see the World Wide Web Consortium’s “XML in 10 points”
(http://www.w3.org/XML/1999/XML-in-10-points). A more thorough tutorial can be found on the
W3Schools Web site (http://www.w3schools.com/xml). For more information about SAX, see the official
SAX Web site (http://www.saxproject.org).

What’s the Problem?
The general problem we’ll be attacking in this project is to parse (read and process) XML files.
Because you can use XML to represent practically anything, and you can do whatever you want
with the data when you parse it, the applications are boundless (as the title of this chapter
indicates).

422 C H A P T E R 2 2 ■ P R O JE C T 3 : X M L F O R A L L O C C A S I O N S

ANYTHING, YOU SAY?

You may be skeptical about what you can really represent with XML. Well, let me give you some examples:
XML can be used to mark up text for ordinary document processing—for example, in the form of XHTML
(http://www.w3.org/TR/xhtml1) or DocBook XML (http://www.oasis-open.org/docbook/xml);
it can be used to represent music (http://musicxml.org), human moods, emotions, and character traits
(http://humanmarkup.org), or to describe any physical object (http://xml.coverpages.org/
pml-ons.html). In Chapter 27, you’ll see how it can be used to call Python methods across a network.

A sampling of existing applications of XML may be found on the XML Cover Pages (http://
xml.coverpages.org/xml.html#applications) or at CBEL (http://www.cbel.com/
xml_markup_languages).

The specific problem tackled in this chapter is to generate a complete Web site from a
single XML file that contains the structure of the site and the basic contents of each page.

Before you proceed with this project, I suggest that you take a few moments to read a bit
about XML and to check out the things it’s used for. That might give you a better understanding
of when it might be a useful file format—and when it would just be overkill. (After all, plain text
files can be just fine when they’re all you need.)

Specific Goals
Our specific goals are as follows:

• The entire Web site should be described by a single XML file, which should include infor-
mation about individual Web pages and directories.

• Your program should create the directories and Web pages as needed.

• It should be easy to change the general design of the entire Web site and regenerate all
the pages with the new design.

This last point is perhaps enough to make it all worthwhile. But there are other benefits. By
placing all your contents in a single XML file, you could easily write other programs that use the
same XML processing techniques to extract various kinds of information, such as tables of
contents, indices for custom search engines, and so on. And even if you don’t use this for your
Web site, you could use it to create HTML-based slide shows (or, by using something like
ReportLab, you could even create PDF slide shows).

Useful Tools
Python has some built-in XML support, but you may have to install some extras yourself. In this
project you’ll need a functioning SAX parser. To see if you have a usable SAX parser, try to
execute the following:

>>> from xml.sax import make_parser
>>> parser = make_parser()

C H A P T E R 2 2 ■ P R O J E CT 3 : X M L F O R A L L O C C A S I O N S 423

If this does not raise an exception, you’re all set. If it does, you have to install PyXML. First,
download the PyXML package from http://sf.net/projects/pyxml. There you can find RPM
packages for Linux, binary installers for Windows, and source distributions for other platforms.
The RPMs are installed with rpm --install, and the binary Windows distribution is installed
simply by executing it. The source distribution is installed through the standard Python instal-
lation mechanism, the Distribution Utilities (Distutils). Simply unpack the tar.gz file, change
to the unpacked directory, and execute the following:

$ python setup.py install

You should now be able to use the XML tools.

■Tip There are plenty of XML tools for Python out there. One very interesting alternative to the “standard”
PyXML framework is Fredrik Lundh’s ElementTree (and the C implementation, cElementTree), available from
http://effbot.org/zone. It’s quite powerful and easy to use, and may well be worth a look if you’re
serious about using XML in Python.

Preparations
Before you can write the program that processes your XML files, you need to design your XML
format. What tags do you need, what attributes should they have, and which tags should go
where? To find out, let’s first consider what it is you want your XML to describe.

The main concepts are Web site, directory, page, name, title, and contents:

• Web site. You won’t be storing any information about the Web site itself, so this is just
the top-level element enclosing all the files and directories.

• Directory. A directory is mainly a container for files and other directories.

• Page. This is a single Web page.

• Name. Both directories and Web pages need names—these will be used as directory
names and file names as they will appear in the file system and the corresponding URLs.

• Title. Each Web page should have a title (not the same as its file name).

• Contents. Each Web page will also have some contents. You’ll just use plain XHTML to
represent the contents here—that way, you can just pass it through to the final Web
pages and let the browsers interpret it.

In short: your document will consist of a single website element, containing several directory
and page elements, each of the directory elements optionally containing more pages and direc-
tories. The directory and page elements will have an attribute called name, which will contain
their name. In addition, the page tag has a title attribute. The page element contains XHTML
code (of the type found inside the XHTML body tag). An example file is shown in Listing 22-1.

424 C H A P T E R 2 2 ■ P R O JE C T 3 : X M L F O R A L L O C C A S I O N S

Listing 22-1. A Simple Web Site Represented As an XML File (website.xml)

<website>
 <page name="index" title="Home Page">
 <h1>Welcome to My Home Page</h1>

 <p>Hi, there. My name is Mr. Gumby, and this is my home page. Here
 are some of my interests:</p>

 Shouting
 Sleeping
 Eating

 </page>
 <directory name="interests">
 <page name="shouting" title="Shouting">
 <h1>Mr. Gumby's Shouting Page</h1>

 <p>...</p>
 </page>
 <page name="sleeping" title="Sleeping">
 <h1>Mr. Gumby's Sleeping Page</h1>

 <p>...</p>
 </page>
 <page name="eating" title="Eating">
 <h1>Mr. Gumby's Eating Page</h1>

 <p>...</p>
 </page>
 </directory>
</website>

First Implementation
At this point, we haven’t yet looked at how XML parsing works. The approach we are using here
(called SAX) consists of writing a set of event handlers (just like in GUI programming) and then
letting an existing XML parser call these handlers as it reads the XML document.

C H A P T E R 2 2 ■ P R O J E CT 3 : X M L F O R A L L O C C A S I O N S 425

WHAT ABOUT DOM?

There are two common ways of dealing with XML in Python (and other programming languages, for that matter):
SAX and DOM (the Document Object Model). A SAX parser reads through the XML file and tells you what it sees
(text, tags, attributes), storing only small parts of the document at a time; this makes SAX simple, fast, and
memory-efficient, which is why I have chosen to use it in this chapter. DOM takes another approach: It constructs
a data structure (the document tree), which represents the entire document. This is slower and requires more
memory, but can be useful if you want to manipulate the structure of your document, for example.

For information about using DOM in Python, check out the Python Library Reference (http://
www.python.org/doc/lib/module-xml.dom.html). In addition to the standard DOM handling, the standard
library contains two other modules, xml.dom.minidom (a simplified DOM) and xml.dom.pulldom (a cross
between SAX and DOM, which reduces memory requirements).

A very fast and simple XML parser (which doesn’t really use DOM, but which creates a complete document
tree from your XML document) is PyRXP (http://www.reportlab.org/pyrxp.html). And then there is
ElementTree (available from http://effbot.org/zone), which is flexible and easy to use.

Creating a Simple Content Handler
There are several event types available when parsing with SAX, but let’s restrict ourselves to
three: the beginning of an element (the occurrence of an opening tag), the end of an element
(the occurrence of a closing tag), and plain text (characters). To parse the XML file, let’s use the
parse function from the xml.sax module. This function takes care of reading the file and gener-
ating the events—but as it generates these events, it needs some event handlers to call. These
event handlers will be implemented as methods of a content handler object. You’ll subclass the
ContentHandler class from xml.sax.handler because it implements all the necessary event handlers
(as dummy operations that have no effect), and you can override only the ones you need.

Let’s begin with a minimal XML parser (assuming that your XML file is called website.xml):

from xml.sax.handler import ContentHandler
from xml.sax import parse

class TestHandler(ContentHandler): pass
parse('website.xml', TestHandler())

If you execute this program, seemingly nothing happens, but you shouldn’t get any error
messages either. Behind the scenes, the XML file is parsed, and the default event handlers are
called—but because they don’t do anything, you won’t see any output.

Let’s try a simple extension. Add the following method to the TestHandler class:

 def startElement(self, name, attrs):
 print name, attrs.keys()

426 C H A P T E R 2 2 ■ P R O JE C T 3 : X M L F O R A L L O C C A S I O N S

This overrides the default startElement event handler. The parameters are the relevant tag
name and its attributes (kept in a dictionary-like object). If you run the program again (using
website.xml from Listing 22-1), you see the following output:

website []
page [u'name', u'title']
h1 []
p []
ul []
li []
a [u'href']
li []
a [u'href']
li []
a [u'href']
directory [u'name']
page [u'name', u'title']
h1 []
p []
page [u'name', u'title']
h1 []
p []
page [u'name', u'title']
h1 []
p []

How this works should be pretty clear. In addition to startElement, you’ll use endElement
(which takes only a tag name as its argument) and characters (which takes a string as its
argument).

The following is an example that uses all these three methods to build a list of the headlines
(the h1 elements) of the Web site file:

from xml.sax.handler import ContentHandler
from xml.sax import parse

class HeadlineHandler(ContentHandler):

 in_headline = False

 def __init__(self, headlines):
 ContentHandler.__init__(self)
 self.headlines = headlines
 self.data = []

C H A P T E R 2 2 ■ P R O J E CT 3 : X M L F O R A L L O C C A S I O N S 427

 def startElement(self, name, attrs):
 if name == 'h1':
 self.in_headline = True

 def endElement(self, name):
 if name == 'h1':
 text = ''.join(self.data)
 self.data = []
 self.headlines.append(text)
 self.in_headline = False

 def characters(self, string):
 if self.in_headline:
 self.data.append(string)

headlines = []
parse('website.xml', HeadlineHandler(headlines))

print 'The following <h1> elements were found:'
for h in headlines:
 print h

Note that the HeadlineHandler keeps track of whether it’s currently parsing text that is
inside a pair of h1 tags. This is done by setting self.in_headline to True when startElement
finds an h1 tag, and setting self.in_headline to False when endElement finds an h1 tag. The
characters method is automatically called when the parser finds some text. As long as the
parser is between two h1 tags (self.in_headline is True), characters will append the string
(which may be just a part of the text between the tags) to self.data, which is a list of strings.
The task of joining these text fragments, appending them to self.headlines (as a single string),
and resetting self.data to an empty list also befalls endElement. This general approach (of
using Boolean variables to indicate whether you are currently “inside” a given tag type) is quite
common in SAX programming.

Running this program (again, with the website.xml file from Listing 22-1), you get the
following output:

The following <h1> elements were found:
Welcome to My Home Page
Mr. Gumby's Shouting Page
Mr. Gumby's Sleeping Page
Mr. Gumby's Eating Page

428 C H A P T E R 2 2 ■ P R O JE C T 3 : X M L F O R A L L O C C A S I O N S

Creating HTML Pages
Now you’re ready to make the prototype. For now, let’s ignore the directories and concentrate
on creating HTML pages. You have to create a slightly embellished event handler that does
the following:

• At the start of each page element, opens a new file with the given name, and writes a suit-
able HTML header to it, including the given title

• At the end of each page element, writes a suitable HTML footer to the file, and closes it

• While inside the page element, passes through all tags and characters without modifying
them (writes them to the file as they are)

• While not inside a page element, ignores all tags (such as website and directory

Most of this is pretty straightforward (at least if you know a bit about how HTML documents
are constructed). There are two problems, however, which may not be completely obvious.

First, you can’t simply “pass through” tags (write them directly to the HTML file you’re
building) because you are given their names only (and possibly some attributes). You have to
reconstruct the tags (with angle brackets and so forth) yourself.

Second, SAX itself gives you no way of knowing whether you are currently “inside” a page
element. You have to keep track of that sort of thing yourself (as we did in the HeadlineHandler
example). For this project, we’re only interested in whether or not to pass through tags and
characters, so we’ll use a Boolean variable called passthrough, which we’ll update as we enter
and leave the pages.

See Listing 22-2 for the code for the simple program.

Listing 22-2. A Simple Page Maker Script (pagemaker.py)

from xml.sax.handler import ContentHandler
from xml.sax import parse

class PageMaker(ContentHandler):
 passthrough = False
 def startElement(self, name, attrs):
 if name == 'page':
 self.passthrough = True
 self.out = open(attrs['name'] + '.html', 'w')
 self.out.write('<html><head>\n')
 self.out.write('<title>%s</title>\n' % attrs['title'])
 self.out.write('</head><body>\n')
 elif self.passthrough:
 self.out.write('<' + name)
 for key, val in attrs.items():
 self.out.write(' %s="%s"' % (key, val))
 self.out.write('>')

C H A P T E R 2 2 ■ P R O J E CT 3 : X M L F O R A L L O C C A S I O N S 429

 def endElement(self, name):
 if name == 'page':
 self.passthrough = False
 self.out.write('\n</body></html>\n')
 self.out.close()
 elif self.passthrough:
 self.out.write('</%s>' % name)
 def characters(self, chars):
 if self.passthrough: self.out.write(chars)

parse('website.xml', PageMaker ())

You should execute this in the directory in which you want your files to appear. Note that
even if two pages are in two different directory elements, they will end up in the same real
directory. (That will be fixed in our second implementation.)

Again, using the file website.xml from Listing 22-1, you get four HTML files. The file called
index.html contains the following:

<html><head>
<title>Home Page</title>
</head><body>

 <h1>Welcome to My Home Page</h1>

 <p>Hi, there. My name is Mr. Gumby, and this is my home page. Here
 are some of my interests:</p>

 Shouting
 Sleeping
 Eating

</body></html>

Figure 22-1 shows how this page looks when viewed in a browser.
Looking at the code, two main weaknesses should be obvious:

• I use if statements to handle the various event types. If I need to handle many such
event types, my if statements will get large and unreadable.

• The HTML code is hard-wired. It should be easy to replace.

Both of these weaknesses will be addressed in the second implementation.

430 C H A P T E R 2 2 ■ P R O JE C T 3 : X M L F O R A L L O C C A S I O N S

Figure 22-1. A generated Web page

Second Implementation
Because the SAX mechanism is so low-level and basic, you may often find it useful to write a
mix-in class that handles some administrative details such as gathering character data, managing
Boolean state variables (such as passthrough), or dispatching the events to your own custom
event handlers. The state and data handling is pretty simple in this project, so let’s focus on the
handler dispatch.

A Dispatcher Mix-In Class
Rather than having to write large if statements in the standard generic event handlers (such as
startElement), it would be nice to just write your own specific ones (such as startPage) and
have them called automatically. You can implement that functionality in a mix-in class, and
then subclass the mix-in along with ContentHandler.

■Note As mentioned in Chapter 7, a mix-in is a class with limited functionality that is meant to be subclassed
along with some other more substantial class.

You want the following functionality in your program: When startElement is called with a
name such as 'foo', it should attempt to find an event handler called startFoo and call it with
the given attributes. Similarly, if endElement is called with 'foo', it should try to call endFoo. If,
in any of these methods, the given handler is not found, a method called defaultStart (or
defaultEnd, respectively) will be called, if present. If the default handler isn’t present either,
nothing should be done.

C H A P T E R 2 2 ■ P R O J E CT 3 : X M L F O R A L L O C C A S I O N S 431

In addition, some care should be taken with the parameters. The custom handlers (for
example, startFoo) do not need the tag name as a parameter, while the custom default handlers
(for example, defaultStart) do. Also, only the start handlers need the attributes.

Confused? Let’s begin by writing the simplest parts of the class:

class Dispatcher:

 # ...

 def startElement(self, name, attrs):
 self.dispatch('start', name, attrs)
 def endElement(self, name):
 self.dispatch('end', name)

Here, the basic event handlers are implemented, and they simply call a method called
dispatch, which takes care of finding the appropriate handler, constructing the argument tuple,
and then calling the handler with those arguments. Here is the code for the dispatch method:

 def dispatch(self, prefix, name, attrs=None):
 mname = prefix + name.capitalize()
 dname = 'default' + prefix.capitalize()
 method = getattr(self, mname, None)
 if callable(method): args = ()
 else:
 method = getattr(self, dname, None)
 args = name,
 if prefix == 'start': args += attrs,
 if callable(method): method(*args)

What happens is this:

1. From a prefix (either 'start' or 'end') and a tag name (for example, 'page'), construct
the method name of the handler (for example, 'startPage').

2. Using the same prefix, construct the name of the default handler (for example,
'defaultStart').

3. Try to get the handler with getattr, using None as the default value.

4. If the result is callable, assign an empty tuple to args.

5. Otherwise, try to get the default handler with getattr, again using None as the default
value. Also, set args to a tuple containing only the tag name (because the default
handler needs that).

6. If you are dealing with a start handler, add the attributes to the argument tuple (args).

7. If your handler is callable (that is, it is either a viable specific handler, or a viable default
handler), call it with the correct arguments.

432 C H A P T E R 2 2 ■ P R O JE C T 3 : X M L F O R A L L O C C A S I O N S

Got that? This basically means that you can now write content handlers like this:

class TestHandler(Dispatcher, ContentHandler):
 def startPage(self, attrs):
 print 'Beginning page', attrs['name']
 def endPage(self):
 print 'Ending page'

Because the dispatcher mix-in takes care of most of the plumbing, the content handler is
fairly simple and readable. (Of course, you’ll add more functionality in a little while.)

Factoring Out the Header, Footer, and Default Handling
This section is much easier than the previous one. Instead of doing the calls to self.out.write
directly in the event handler, we’ll create separate methods for writing the header and footer.
That way you can easily override these methods by subclassing the event handler. Let’s make
the default header and footer really simple:

 def writeHeader(self, title):
 self.out.write("<html>\n <head>\n <title>")
 self.out.write(title)
 self.out.write("</title>\n </head>\n <body>\n")

 def writeFooter(self):
 self.out.write("\n </body>\n</html>\n")

Handling of the XHTML contents was also linked a bit too intimately with our original
handlers. The XHTML will now be handled by defaultStart and defaultEnd:

 def defaultStart(self, name, attrs):
 if self.passthrough:
 self.out.write('<' + name)
 for key, val in attrs.items():
 self.out.write(' %s="%s"' % (key, val))
 self.out.write('>')

 def defaultEnd(self, name):
 if self.passthrough:
 self.out.write('</%s>' % name)

This works just like before, except that I’ve moved the code to separate methods (which is
usually a good thing). Now, on to the last piece of the puzzle.

Support for Directories
To create the necessary directories, you need a couple of useful functions from the os and
os.path modules. One of these functions is os.makedirs, which makes all the necessary directories
in a given path. For example, os.makedirs('foo/bar/baz') creates the directory foo in the

C H A P T E R 2 2 ■ P R O J E CT 3 : X M L F O R A L L O C C A S I O N S 433

current directory, then creates bar in foo, and finally, baz in bar. If foo already exists, only bar
and baz are created, and similarly, if bar also exists, only baz is created. However, if baz exists as
well, an exception is raised.

To avoid this exception, you need the function os.path.isdir, which checks whether
a given path is a directory (that is, whether it exists already). Another useful function is
os.path.join, which joins several paths with the correct separator (for example, / in UNIX
and so forth).

At all times during the processing, keep the current directory path as a list of directory
names, referenced by the variable directory. When you enter a directory, append its name;
when you leave it, pop the name off. Assuming that directory is set up properly, you can define
a function for ensuring that the current directory exists:

 def ensureDirectory(self):
 path = os.path.join(*self.directory)
 if not os.path.isdir(path): os.makedirs(path)

Notice how I’ve used argument splicing (with the star operator, *) on the directory list
when supplying it to os.path.join.

The base directory of our Web site (for example, public_html) can be given as an argument
to the constructor, which then looks like this:

 def __init__(self, directory):
 self.directory = [directory]
 self.ensureDirectory()

The Event Handlers
Finally we’ve come to the event handlers. We need four of them—two for dealing with directories,
and two for pages. The directory handlers simply use the directory list and the ensureDirectory
method:

 def startDirectory(self, attrs):
 self.directory.append(attrs['name'])
 self.ensureDirectory()

 def endDirectory(self):
 self.directory.pop()

The page handlers use the writeHeader and writeFooter methods. In addition, they set the
passthrough variable (to pass through the XHTML), and—perhaps most importantly—they
open and close the file associated with the page:

 def startPage(self, attrs):
 filename = os.path.join(*self.directory+[attrs['name']+'.html'])
 self.out = open(filename, 'w')
 self.writeHeader(attrs['title'])
 self.passthrough = True

434 C H A P T E R 2 2 ■ P R O JE C T 3 : X M L F O R A L L O C C A S I O N S

 def endPage(self):
 self.passthrough = False
 self.writeFooter()
 self.out.close()

The first line of startPage may look a little intimidating, but it is more or less the same as
the first line of ensureDirectory, except that you add the file name (and give it an .html suffix).

The full source code of the program is shown in Listing 22-3. You can find a list of the
generated files and directories in Listing 22-4.

Listing 22-3. The Web Site Constructor (website.py)

from xml.sax.handler import ContentHandler
from xml.sax import parse
import os

class Dispatcher:

 def dispatch(self, prefix, name, attrs=None):
 mname = prefix + name.capitalize()
 dname = 'default' + prefix.capitalize()
 method = getattr(self, mname, None)
 if callable(method): args = ()
 else:
 method = getattr(self, dname, None)
 args = name,
 if prefix == 'start': args += attrs,
 if callable(method): method(*args)

 def startElement(self, name, attrs):
 self.dispatch('start', name, attrs)

 def endElement(self, name):
 self.dispatch('end', name)

class WebsiteConstructor(Dispatcher, ContentHandler):

 passthrough = False

 def __init__(self, directory):
 self.directory = [directory]
 self.ensureDirectory()

 def ensureDirectory(self):
 path = os.path.join(*self.directory)
 if not os.path.isdir(path): os.makedirs(path)

C H A P T E R 2 2 ■ P R O J E CT 3 : X M L F O R A L L O C C A S I O N S 435

 def characters(self, chars):
 if self.passthrough: self.out.write(chars)

 def defaultStart(self, name, attrs):
 if self.passthrough:
 self.out.write('<' + name)
 for key, val in attrs.items():
 self.out.write(' %s="%s"' % (key, val))
 self.out.write('>')

 def defaultEnd(self, name):
 if self.passthrough:
 self.out.write('</%s>' % name)

 def startDirectory(self, attrs):
 self.directory.append(attrs['name'])
 self.ensureDirectory()

 def endDirectory(self):
 self.directory.pop()

 def startPage(self, attrs):
 filename = os.path.join(*self.directory+[attrs['name']+'.html'])
 self.out = open(filename, 'w')
 self.writeHeader(attrs['title'])
 self.passthrough = True

 def endPage(self):
 self.passthrough = False
 self.writeFooter()
 self.out.close()

 def writeHeader(self, title):
 self.out.write('<html>\n <head>\n <title>')
 self.out.write(title)
 self.out.write('</title>\n </head>\n <body>\n')

 def writeFooter(self):
 self.out.write('\n </body>\n</html>\n')

parse('website.xml', WebsiteConstructor('public_html'))

436 C H A P T E R 2 2 ■ P R O JE C T 3 : X M L F O R A L L O C C A S I O N S

Listing 22-4. The Files and Directories Created

public_html/
public_html/index.html
public_html/interests
public_html/interests/shouting.html
public_html/interests/sleeping.html
public_html/interests/eating.html

ENCODING BLUES

If your XML file contains special characters (those with ordinal numbers above 127), you may be in trouble.
The XML parser uses Unicode strings during its processing, and returns those to you (for example, in the
characters event handler). Unicode handles the special characters just fine. However, if you want to convert
this Unicode string to an ordinary string (which is what happens when you print it, for example), an exception
is raised (assuming that your default encoding is ASCII):

>>> some_string = u'Möööse'
>>> some_string
u'M\xf6\xf6\xf6se'
>>> print some_string

Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)

As you can see, the error message is “ASCII encoding error,” which actually means that Python has tried
to encode the Unicode string with the ASCII encoding, which isn’t possible when it contains special characters
like this. (You can find the default encoding of your installation using the sys.getdefaultencoding function. You
can also change it with the sys.setdefaultencoding, but only in the site-wide customization file called
site.py.) Encoding is done with the encode method:

>>> some_string.encode('ascii')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)

To solve this problem, you have to use another encoding—for example, ISO8859-1 (which is fine for
most European languages):

>>> print some_string.encode('iso8859-1')
Möööse

(The actual appearance of the output will depend on your terminal emulator.)
You can find more information about such encodings at the World Wide Web Consortium’s Web site

(http://www.w3.org/International/O-charset.html).

C H A P T E R 2 2 ■ P R O J E CT 3 : X M L F O R A L L O C C A S I O N S 437

Further Exploration
Now you’ve got the basic program. What can you do with it? Here are some suggestions:

• Create a new ContentHandler for creating a table of contents or a menu (with links) for
the Web site.

• Add navigational aids to the Web pages that tell the user where (in which directory) he or
she is.

• Create a subclass of WebsiteConstructor that overrides writeHeader and writeFooter to
provide customized design.

• Create another ContentHandler that constructs a single Web page from the XML file.

• Create a ContentHandler that summarizes your Web site somehow, for example in RSS
(see Chapter 15).

• Check out other tools for transforming XML, especially XSLT (see http://www.w3.org/
TR/xslt and http://www.4suite.org).

• Create one or more PDF documents based on the XML file, using a tool such as
ReportLab’s Platypus (http://reportlab.org).

• Make it possible to edit the XML file through a Web interface (see Chapter 25).

What Now?
After this foray into the world of XML parsing, let’s do some more network programming. In the
next chapter, you create a program that can gather news items from various network sources
(such as Web pages and Usenet groups) and generate custom news reports for you.

439

■ ■ ■

C H A P T E R 2 3

Project 4: In the News

In this project, you see how you go from a simple prototype without any form of abstraction
(no functions, no classes) to a generic system in which some important abstractions have been
added. Also, you get a brief introduction to the nntplib library.

WHAT IS NNTP?

Network News Transfer Protocol (NNTP) is a standard network protocol for managing messages posted on
Usenet discussion groups. NNTP servers form a global network that collectively manage these newsgroups,
and through an NNTP client (also called a newsreader) you can post and read messages. Most recent Web
browsers include NNTP clients, and separate clients exist as well.

For more information about Usenet, you may check out the informational Web site at http://
www.usenet.org.

What’s the Problem?
The program you write in this project will be an information-gathering agent, a program that
will be able to gather information (more specifically, news) and compile a report for you. Given
the network functionality you have already encountered, that might not seem very difficult—
and it isn’t, really. But in this project you go a bit beyond the simple “download a file with urllib”
approach. You use another network library that is a bit more difficult to use than urllib, namely
nntplib. In addition, you get to refactor the program to allow many types of news sources and
various types of destinations, making a clear separation between the front-end and the back-
end, with the main engine in the middle.

■Note Refactoring means improving the design of an existing program, usually by adding abstraction
and structure.

440 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

Specific Goals
The main goals for the final program are as follows:

• The program should be able to gather news from many different sources.

• It should be easy to add new news sources (and even new kinds of sources).

• The program should be able to dispatch its compiled news report to many different
destinations, in many different formats.

• It should be easy to add new destinations (and even new kinds of destinations).

Useful Tools
In this project, there is no need to install separate software. What you need, however, are some
standard library modules, including one that you haven’t seen before, nntplib, which deals
with NNTP servers. Instead of explaining all the details of that module, let’s examine it through
some prototyping.

You will also be using the time module. See Chapter 10 for more information.

Preparations
To be able to use nntplib you need to have access to an NNTP server. If you’re not sure whether
you do, you could ask your ISP or system administrator for details. In the code examples in this
chapter, I use the newsgroup comp.lang.python.announce, so you should make sure that your
news (NNTP) server has that group, or you should find some other group you’d like to use. It is
important that the NNTP server support the NEWNEWS command—if it doesn’t, the programs in
this chapter won’t work. (If you don’t know whether your server supports this command or not,
simply try to execute the programs and see what happens.)

If you don’t have access to an NNTP server, or your server’s NEWNEWS command is disabled,
several open servers are available for anyone to use. A quick Web search for “free nntp server”
ought to give you a number of servers to choose from. The Web site http://newzbot.com also
contains many useful resources.

Assuming that your news server is news.foo.bar (this is not a real server name, and won’t
work), you can test your NNTP server like this:

>>> from nntplib import NNTP
>>> server = NNTP('news.foo.bar')
>>> server.group('comp.lang.python.announce')[0]

■Note To connect to some servers, you may need to supply additional parameters for authentication.
Please consult the Python Library Reference for details on the optional parameters of the NNTP constructor.

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 441

The result of the last line should be a string beginning with '211' (basically meaning that
the server has the group you asked for), or '411' (which means that the server doesn’t have the
group). It might look something like this:

'211 51 1876 1926 comp.lang.python.announce'

If the returned string starts with '411', you should use a newsreader to look for another
group you might want to use. (You may also get an exception with an equivalent error message.) If
an exception is raised, perhaps you got the server name wrong. Another possibility is that you
were “timed out” between the time you created the server object and the time you called the
group method—the server may only allow you to stay connected for a short period of time
(such as 10 seconds). If you’re having trouble typing that fast, simply put the code in a script
and execute it (with an added print) or put the server object creation and method call on the
same line (separated by a semicolon).

First Implementation
In the spirit of prototyping, let’s just tackle the problem head on. The first thing you want to do
is to download the most recent messages from a newsgroup on an NNTP server. To keep things
simple, just print out the result to standard output (with print).

Before looking at the details of the implementation, you might want to browse the source
code in Listing 23-1 later in this section, and perhaps even execute the program to see how it works.

The program logic isn’t very complicated, but you need to figure out how to use nntplib.
You’ll be using one single object of the NNTP class. As you saw in the previous section, this class
is instantiated with a single constructor argument—the name of an NNTP server. You need to call
three methods on this instance: newnews, which returns a list of articles posted after a certain
date and time; head, which gives you various information about the articles (most notably their
subjects); and body, which gives you the main text of the articles.

The newnews method requires a date string (in the form yymmdd) and an hour string (in the
form hhmmss) in addition to the group name. To construct these, you need some functions
from the time module, namely time, localtime, and strftime. (See Chapter 10 for more infor-
mation on the time module.)

Let’s say you want to download all new messages since yesterday—then you have to
construct a date and time 24 hours before the current time. The current time (in seconds) is
found with the time function; to find the time yesterday, all you have to do is subtract 24 hours
(in seconds). To be able to use this time with strftime, it must be converted to a time tuple (see
Chapter 10) with the localtime function. The code for finding “yesterday” then becomes

from time import time, localtime
day = 24 * 60 * 60 # Number of seconds in one day
yesterday = localtime(time() - day)

The next step is to format the time correctly, as two strings. For that you use strftime, as
in the following example:

442 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

>>> from time import strftime
>>> strftime('%y%m%d')
'020409'
>>> strftime('%H%M%S')
'141625'

The string argument to strftime is a format string, which specifies the format you want the
time to be in. Most characters are used directly in the resulting time string, but those preceded
by a percent sign are replaced with various time-related values. For instance, %y is replaced
with the last two digits of the year, %m with the month (as a two-digit number), and so on. For a
full list of these codes, consult the Python Library Reference (http://python.org/doc/lib/
module-time.html). When supplied only with a format string, strftime uses the current time.
Optionally, you may supply a time tuple as a second argument:

from time import strftime
date = strftime('%y%m%d', yesterday)
hour = strftime('%H%M%S', yesterday)

Now that you’ve got the date and time in correct format for the newnews method, you only
have to instantiate a server and call the method. Using the same fictitious server name as earlier,
the code becomes

servername = 'news.foo.bar'
group = 'comp.lang.python.announce'
server = NNTP(servername)

ids = server.newnews(group, date, hour)[1]

Note that I’ve extracted the second argument of the tuple that is returned from newnews.
It’s sufficient for our purposes: a list of article IDs of the articles that were posted after the given
date and hour. (The newnews method sends a NEWNEWS command to the NNTP server. As described
in the “Preparations” section, this command may be disabled, in which case you should find
another server.)

You need the article IDs when you call the head and body methods later, to tell the server
which article you’re talking about.

So, you’re all set to start using head and body (for each of the IDs) and printing out the results.
Just like newnews, head and body return tuples with various information (such as whether or not
the command succeeded), but you care only about the returned data itself, which is the fourth
element—a list of strings. The body of the article with a given ID can be fetched like this:

 body = server.body(id)[3]

From the head (a list of lines containing various information about the article, such as the
subject, the date it was posted, and so on) you want only the subject. The subject line is in the
form "Subject: Hello, world!", so you need to find the line that starts with "Subject:" and
extract the rest of the line. Because (according to the NNTP standard) "subject" can also be

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 443

spelled as all lowercase, all uppercase, or any kind of combination of upper- and lowercase
letters, you simply call the lower method on the line and compare it to "subject". Here is the
loop that finds the subject within the data returned by the call to head:

 head = server.head(id)[3]
 for line in head:
 if line.lower().startswith('subject'):
 subject = line[9:]
 break

The break isn’t strictly necessary, but when you’ve found the subject, there’s no need to
iterate over the rest of the lines.

After having extracted the subject and body of an article, you have only to print it, for
instance, like this:

 print subject
 print '-'*len(subject)
 print '\n'.join(body)

After printing all the articles, you call server.quit(), and that’s it. In a UNIX shell such as
bash, you could run this program like this:

$ python newsagent1.py | less

The use of less is useful for reading the articles one at a time. (If you have no such pager
program available, you could rewrite the print part of the program to store the resulting text in
a file, which you’ll also be doing in the second implementation. See Chapter 11 for more infor-
mation on file handling. If you get no output, try looking further back than yesterday.) The
source code for the simple news gathering agent is shown in Listing 23-1.

Listing 23-1. A Simple News Gathering Agent (newsagent1.py)

from nntplib import NNTP
from time import strftime, time, localtime

day = 24 * 60 * 60 # Number of seconds in one day

yesterday = localtime(time() - day)
date = strftime('%y%m%d', yesterday)
hour = strftime('%H%M%S', yesterday)

servername = 'news.foo.bar'
group = 'comp.lang.python.announce'
server = NNTP(servername)

ids = server.newnews(group, date, hour)[1]

444 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

for id in ids:
 head = server.head(id)[3]
 for line in head:
 if line.lower().startswith('subject'):
 subject = line[9:]
 break

 body = server.body(id)[3]

 print subject
 print '-'*len(subject)
 print '\n'.join(body)

server.quit()

Second Implementation
The first implementation worked, but was quite inflexible in that it only let you retrieve news
from Usenet discussion groups. In the second implementation, you fix that by refactoring the
code a bit. You add structure and abstraction by creating some classes and methods to repre-
sent the various parts of the code. Once you’ve done that, some of the parts may be replaced by
other classes much more easily than you could replace parts of the code in the original program.

Again, before immersing yourself in the details of the second implementation, you might
want to skim (and perhaps execute) the code in Listing 23-2, later in this chapter.

So, what classes do you need? Let’s just do a quick review of the nouns in the problem
description, as suggested in Chapter 7 (I’ve already filtered out some of the ones I don’t think
you’ll need): information, agent, news, report, network, news source, destination, front-end,
back-end, main engine. Just glancing at this list of nouns, I’d suggest the following main classes
(or kinds of classes): NewsAgent, NewsItem, Source, and Destination. The various sources will
constitute the front-end and the destinations will constitute the back-end, with the news agent
sitting in the middle.

The easiest of these is NewsItem—it represents only a piece of data, consisting of a title and
a body (a short text). That can be implemented as follows:

class NewsItem:

 def __init__(self, title, body):
 self.title = title
 self.body = body

To find out exactly what is needed from the news sources and the news destinations, it
could be a good idea to start by writing the agent itself. The agent must maintain two lists: one
of sources and one of destinations. Adding sources and destinations can be done through the
methods addSource and addDestination:

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 445

class NewsAgent:

 def __init__(self):
 self.sources = []
 self.destinations = []

 def addSource(self, source):
 self.sources.append(source)

 def addDestination(self, dest):
 self.destinations.append(dest)

 # The rest of the code is developed later in the chapter

The only thing missing now is a method to distribute the news items from the sources to
the destinations. During distribution, each destination must have a method that returns all its
news items, and each source needs a method for receiving all the news items that are being
distributed. Let’s call these methods getItems and receiveItems. In the interest of flexibility,
let’s just require getItems to return an arbitrary iterator of NewsItems. To make the destinations
easier to implement, however, let’s assume that receiveItems is callable with a sequence argu-
ment (which can be iterated over more than once, to make a table of contents before listing the
news items, for example). After this has been decided, the distribute method simply becomes

 def distribute(self):
 items = []
 for source in self.sources:
 items.extend(source.getItems())
 for dest in self.destinations:
 dest.receiveItems(items)

This iterates through all the sources, building a list of news items. Then it iterates through
all the destinations and supplies each of them with the full list of news items.

Now, all you need is a couple of sources and destinations. To begin testing, you can simply
create a destination that works like the printing in the first prototype:

class PlainDestination:

 def receiveItems(self, items):
 for item in items:
 print item.title
 print '-'*len(item.title)
 print item.body

The formatting is the same—the difference is that you have encapsulated the formatting. It
is now one of several alternative destinations, rather than a hard-coded part of the program. A
slightly more complicated destination (HTMLDestination, which produces HTML) can be seen in

446 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

Listing 23-2, later in this chapter. It builds on the approach of PlainDestination with a few
extra features:

• The text it produces is HTML.

• It writes the text to a specific file, rather than standard output.

• It creates a table of contents in addition to the main list of items.

And that’s it, really. The table of contents is created using hyperlinks that link to parts of
the page. You accomplish this by using links of the form ... (where 42
might be some other number), which leads to the headline with the enclosing anchor tag
... (where, again, 42 could be another number, but should be the same as
in the table of contents). The table of contents and the main listing of news items are built in
two different for loops. You can see a sample result (using the upcoming NNTPSource) in
Figure 23-1.

Figure 23-1. An automatically generated news page

It’s important to notice the following here: When thinking about the design, I considered
using a generic superclass to represent news sources and one to represent news destinations.
As it turns out, the sources and destinations don’t really share any behavior, so there is no point
in using a common superclass. As long as they implement the necessary methods (getItems and
receiveItems) correctly, the NewsAgent will be happy. (This is an example of using a protocol, as
described in Chapter 9, rather than a specific class.)

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 447

When creating an NNTPSource, much of the code can be snipped from the original prototype.
As you will see in later in Listing 23-2, the main differences from the original are the following:

• The code has been encapsulated in the getItems method. The servername and group
variables are now arguments to the constructor. Also a window (a time window) is added,
instead of assuming that you want the news since yesterday (which is equivalent to
setting window to 1).

• To extract the subject, a Message object from the email module is used (constructed with
the message_from_string function). This is the sort of thing you might add to later versions
of your program as you thumb through the docs (as mentioned in Chapter 21, in the
section “Using the LinePlot Class”).

• Instead of printing each news item directly, a NewsItem object is yielded (making
getItems a generator).

To show the flexibility of the design, let’s add another news source—one that can extract
news items from Web pages (using regular expressions; see Chapter 10 for more information).
SimpleWebSource (see Listing 23-2) takes a URL and two regular expressions (one representing
titles, and one representing bodies) as its constructor arguments. In getItems, it uses the regexp
methods findall to find all the occurrences (titles and bodies) and zip to combine these. It
then iterates over the list of (title, body) pairs, yielding a NewsItem for each. As you can see,
adding new kinds of sources (or destinations, for that matter) isn’t very difficult.

To put the code to work, let’s instantiate an agent, some sources, and some destinations.
In the function runDefaultSetup (which is called if the module is run as a program), several
such objects are instantiated:

• A SimpleWebSource is constructed for the BBC News Web site. It uses two simple regular
expressions to extract the information it needs. (Note that the layout of the HTML on
these pages might change, in which case you need to rewrite the regexps. This also applies if
you are using some other page—just view the HTML source and try to find a pattern that
applies.)

• An NNTPSource for comp.lang.python. The time window is set to 1, so it works just like the
first prototype.

• A PlainDestination, which prints all the news gathered.

• An HTMLDestination, which generates a news page called news.html.

When all of these objects have been created and added to the NewsAgent, the distribute
method is called.

You can run the program like this:

$ python newsagent2.py

The resulting news.html page is shown in Figure 23-2.

448 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

Figure 23-2. A news page with more than one source

The full source code of the second implementation is found in Listing 23-2.

Listing 23-2. A More Flexible News Gathering Agent (newsagent2.py)

from __future__ import generators
from nntplib import NNTP
from time import strftime, time, localtime
from email import message_from_string
from urllib import urlopen
import textwrap
import re

day = 24 * 60 * 60 # Number of seconds in one day

def wrap(string, max=70):
 """
 Wraps a string to a maximum line width.
 """

 return '\n'.join(textwrap.wrap(string)) + '\n'

class NewsAgent:
 """
 An object that can distribute news items from news
 sources to news destinations.
 """

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 449

 def __init__(self):
 self.sources = []
 self.destinations = []

 def addSource(self, source):
 self.sources.append(source)

 def addDestination(self, dest):
 self.destinations.append(dest)

 def distribute(self):
 """
 Retrieve all news items from all sources, and
 Distribute them to all destinations.
 """
 items = []
 for source in self.sources:
 items.extend(source.getItems())
 for dest in self.destinations:
 dest.receiveItems(items)

class NewsItem:
 """
 A simple news item consisting of a title and a body text.
 """
 def __init__(self, title, body):
 self.title = title
 self.body = body

class NNTPSource:
 """
 A news source that retrieves news items from an NNTP group.
 """
 def __init__(self, servername, group, window):
 self.servername = servername
 self.group = group
 self.window = window

 def getItems(self):

 start = localtime(time() - self.window*day)
 date = strftime('%y%m%d', start)
 hour = strftime('%H%M%S', start)

 server = NNTP(self.servername)

450 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

 ids = server.newnews(self.group, date, hour)[1]

 for id in ids:
 lines = server.article(id)[3]
 message = message_from_string('\n'.join(lines))

 title = message['subject']
 body = message.get_payload()
 if message.is_multipart():
 body = body[0]

 yield NewsItem(title, body)

 server.quit()

class SimpleWebSource:
 """
 A news source that extracts news items from a Web page using
 regular expressions.
 """
 def __init__(self, url, titlePattern, bodyPattern):
 self.url = url
 self.titlePattern = re.compile(titlePattern)
 self.bodyPattern = re.compile(bodyPattern)

 def getItems(self):
 text = urlopen(self.url).read()
 titles = self.titlePattern.findall(text)
 bodies = self.bodyPattern.findall(text)
 for title, body in zip(titles, bodies):
 yield NewsItem(title, wrap(body))

class PlainDestination:
 """
 A news destination that formats all its news items as
 plain text.
 """
 def receiveItems(self, items):
 for item in items:
 print item.title
 print '-'*len(item.title)
 print item.body

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 451

class HTMLDestination:
 """
 A news destination that formats all its news items
 as HTML.
 """
 def __init__(self, filename):
 self.filename = filename

 def receiveItems(self, items):

 out = open(self.filename, 'w')
 print >> out, """
 <html>
 <head>
 <title>Today's News</title>
 </head>
 <body>
 <h1>Today's News</h1>
 """

 print >> out, ''
 id = 0
 for item in items:
 id += 1
 print >> out, ' %s' % (id, item.title)
 print >> out, ''

 id = 0
 for item in items:
 id += 1
 print >> out, '<h2>%s</h2>' % (id, item.title)
 print >> out, '<pre>%s</pre>' % item.body

 print >> out, """
 </body>
 </html>
 """

def runDefaultSetup():
 """
 A default setup of sources and destination. Modify to taste.
 """
 agent = NewsAgent()

452 C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S

 # A SimpleWebSource that retrieves news from the
 # BBC news site:
 bbc_url = 'http://news.bbc.co.uk/text_only.stm'
 bbc_title = r'(?s)a href="[^"]*">\s*\s*(.*?)\s*'
 bbc_body = r'(?s)\s*
\s*(.*?)\s*<'
 bbc = SimpleWebSource(bbc_url, bbc_title, bbc_body)

 agent.addSource(bbc)

 # An NNTPSource that retrieves news from comp.lang.python.announce:
 clpa_server = 'news.foo.bar' # Insert real server name
 clpa_group = 'comp.lang.python.announce'
 clpa_window = 1
 clpa = NNTPSource(clpa_server, clpa_group, clpa_window)

 agent.addSource(clpa)

 # Add plain text destination and an HTML destination:
 agent.addDestination(PlainDestination())
 agent.addDestination(HTMLDestination('news.html'))

 # Distribute the news items:
 agent.distribute()

if __name__ == '__main__': runDefaultSetup()

Further Exploration
Because of its extensible nature, this project invites much further exploration. Here are some ideas:

• Create a more ambitious WebSource, using the screen scraping techniques discussed in
Chapter 15.

• Create an RSSSource, which parses RSS, also discussed in Chapter 15.

• Improve the layout for the HTMLDestination.

• Create a page monitor that gives you a news item if a given Web page has changed since
the last time you examined it. (Just download a copy when it has changed and compare
that later. Take a look at the standard library module filecmp for comparing files.)

• Create a CGI version of the news script (see Chapter 15).

• Create an EmailDestination, which sends you an e-mail with news items. (See the standard
library module smtplib module for sending e-mail.)

• Add command-line switches to decide what news formats you want. (See the standard
library modules getopt and optparse for some techniques.)

C H A P T E R 2 3 ■ P R O J E C T 4 : I N T H E N E W S 453

• Add a configuration file (see Chapter 19) for setting up sources and destinations.

• Give the information about where the news comes from, to allow a fancier layout.

• Try to categorize your news items (by searching for keywords, perhaps).

• Create an XMLDestination, which produces XML files suitable for the site builder in
Project 3. Voilà—you have a news Web site.

What Now?
You’ve done a lot of file creation and file handling (including downloading the required files),
and although that is very useful for a lot of things, it isn’t very interactive. In the next project,
you create a chat server, where you can chat with your friends online. You can even extend it to
create your own virtual (textual) environment.

455

■ ■ ■

C H A P T E R 2 4

Project 5: A Virtual Tea Party

In this project, you do some serious network programming. In Chapter 14, I showed you how,
in general terms; now you get to try it out. You’ll write a chat server—a program that lets several
people connect via the Internet and chat with each other in real time. There are many ways to
create such a beast in Python. A simple and natural approach might be to use the Twisted
framework (discussed in Chapter 14), for example, with the LineReceiver class taking center
stage. In this chapter, I stick to the standard libraries, basing the program on the modules
asyncore and asynchat. If you’d like, you could try out some of the alternative methods (such as
forking or threading) discussed in Chapter 14.

What’s the Problem?
Online chatting is becoming quite commonplace. There are many chat services of various
kinds (IRC, instant messengers, and so forth) available all over the Internet; some of these are
even full-fledged text-based virtual worlds (see http://www.mudconnect.com for a long list). If
you want to set up a chat server, there are many free server programs you can download and
install—but writing one yourself is useful for two reasons:

• You learn about network programming.

• You can customize it as much as you want.

The second point suggests that you can start with a simple chat server and develop it into
basically any kind of server (including a virtual world), with all the power of Python at your
fingertips. Pretty awesome, isn’t it?

Specific Goals
Specifically, the program you create must be able to do the following:

• Receive multiple connections from different users.

• Let the users act in parallel.

• Interpret commands such as say or logout.

456 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

• Enable each individual session to behave according to the state the user is in (connected,
logged in, logging out, and so on).

• Be easily extensible.

The two things that will require special tools are the network connections and the parallel
nature of the program.

Useful Tools
The only new tools you need in this project are the asyncore module from the standard library
and its relative asynchat. I’ll describe the basics of how these work; you can find more details
about them in the Python Library Reference (http://python.org/doc/lib/module-asyncore.html
and http://python.org/doc/lib/module-asynchat.html).

What’s It For?
As discussed in Chapter 14, the basic component in a network program is the socket. Sockets
can be created directly by importing the socket module and using the functions there. So what
do you need asyncore for?

The asyncore framework enables you to juggle several users who are connected simulta-
neously. Imagine a scenario in which you have no special tools for handling this. When you
start up the server, it awaits connecting users. When one user is connected, it starts reading
data from that user and supplying results through a socket. But what happens if another user is
already connected? The second user to connect must wait until the first one has finished. In
some cases that will work just fine, but when you’re writing a chat server, the whole point is
that more than one user can be connected—how else could users chat with one another?

The asyncore framework is based on an underlying mechanism (the select function from
the select module, as discussed in Chapter 14) that allows the server to serve all the connected
users in a piecemeal fashion. Instead of reading all the available data from one user before
going on to the next, only some data is read. Also, the server reads only from the sockets where
there is data to be read. This is done again and again, in a loop. Writing is handled similarly.
You could implement this yourself using just the modules socket and select, but asyncore and
asynchat provide a very useful framework that takes care of the details for you.

■Tip For alternative ways of implementing parallel user connections, see the section “Multiple Connections” in
Chapter 14.

Preparations
The first thing you need is a computer that’s connected to a network (such as the Internet)—
otherwise others won’t be able to connect to your chat server. (It is possible to connect to the

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 457

chat server from your own machine, but that’s not much fun in the long run, is it?) To be able
to connect, the user has to know the address of your machine (a machine name such as
foo.bar.baz.com or an IP number). In addition, the user must know the port number used by
your server. You can set this in your program; in the code in this chapter I use the (rather arbitrary)
number 5005.

■Note As mentioned in Chapter 14, certain port numbers are restricted and require administrator privileges.
In general, numbers greater than 1023 are okay.

To test your server you need a client—the program on the user side of the interaction.
A simple program for this sort of thing is telnet (which basically lets you connect to any socket
server). In UNIX, you probably have this program available on the command line:

$ telnet some.host.name 5005

The preceding command connects to the machine some.host.name on port 5005. To connect
to the same machine on which you’re running the telnet command, simply use the machine
name localhost. (You might want to supply an escape character through the -e switch to make
sure you can quit telnet easily. See the man page for more details.)

In Windows, you can use either the standard telnet command (in a DOS window) or a
terminal emulator with telnet functionality, such as PuTTY (software and more information
available at http://www.chiark.greenend.org.uk/~sgtatham/putty). However, if you are installing
new software, you might as well get a client program tailored to chatting. MUD (or MUSH or
MOO or some other related acronym) clients are quite suitable for this sort of thing. My client
of choice is TinyFugue (software and more information available at http://tf.tcp.com). It is
mainly designed for use in UNIX. (There are several clients available for Windows as well; just
do a Web search for “mud client” or something similar.)

First Implementation
Let’s break things down a bit. We need to create two main classes: one representing the chat
server and one representing each of the chat sessions (the connected users).

The ChatServer Class
To create the basic ChatServer, you subclass the dispatcher class from asyncore. The dispatcher
is basically just a socket object, but with some extra event handling features, which you’ll be
using in a minute.

See Listing 24-1 for a basic chat server program (that does very little).

458 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

Listing 24-1. A Minimal Server Program

from asyncore import dispatcher
import asyncore

class ChatServer(dispatcher): pass

s = ChatServer()
asyncore.loop()

If you run this program, nothing happens. To make the server do anything interesting, you
should call its create_socket method to create a socket, and its bind and listen methods to
bind the socket to a specific port number and to tell it to listen for incoming connections. (That
is what servers do, after all.) In addition, you’ll override the handle_accept event handling
method to actually do something when the server accepts a client connection. The resulting
program is shown in Listing 24-2.

Listing 24-2. A Server That Accepts Connections

from asyncore import dispatcher
import socket, asyncore

class ChatServer(dispatcher):

 def handle_accept(self):
 conn, addr = self.accept()
 print 'Connection attempt from', addr[0]

s = ChatServer()
s.create_socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(('', 5005))
s.listen(5)
asyncore.loop()

The handle_accept method calls self.accept, which lets the client connect. This returns
a connection (a socket that is specific for this client) and an address (information about which
machine is connecting). Instead of doing anything useful with this connection, the handle_accept
method simply prints that a connection attempt was made. addr[0] is the IP address of the client.

The server initialization calls create_socket with two arguments that specify the type of
socket you want. You could use different types, but those shown here are what you usually
want. The call to the bind method simply binds the server to a specific address (host name and
port). The host name is empty (an empty string, essentially meaning “localhost,” or, more tech-
nically, “all interfaces on this machine”) and the port number is 5005. The call to listen tells
the server to listen for connections; it also specifies a backlog of five connections. The final call
to asyncore.loop starts the server’s listening loop as before.

This server actually works. Try to run it and then connect to it with your client. The client
should immediately be disconnected, and the server should print out the following:

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 459

Connection attempt from 127.0.0.1

The IP address will be different if you don’t connect from the same machine as your server.
To stop the server, simply use a keyboard interrupt: Ctrl+C in UNIX, Ctrl+Break in DOS.
Shutting down the server with a keyboard interrupt results in a stack trace; to avoid that,

you can wrap the loop in a try/except statement. With some other cleanups, the basic server
ends up as shown in Listing 24-3.

Listing 24-3. The Basic Server with Some Cleanups

from asyncore import dispatcher
import socket, asyncore

PORT = 5005

class ChatServer(dispatcher):

 def __init__(self, port):
 dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)

 def handle_accept(self):
 conn, addr = self.accept()
 print 'Connection attempt from', addr[0]

if __name__ == '__main__':
 s = ChatServer(PORT)
 try: asyncore.loop()
 except KeyboardInterrupt: pass

The added call to set_reuse_addr lets you reuse the same address (specifically, the port
number) even if the server isn’t shut down properly. (Without this call, you may have to wait for
a while before the server can be started again—or change the port number each time the server
crashes—because your program may not be able to properly notify your operating system that
it’s finished with the port.)

The ChatSession Class
The basic ChatServer doesn’t do much good. Instead of ignoring the connection attempts, a
new dispatcher object should be created for each connection. However, these objects will
behave differently from the one used as the main server. They won’t be listening on a port for
incoming connections; they already are connected to a client. Their main task is collecting data
(text) coming from the client and responding to it. You could implement this functionality
yourself by subclassing dispatcher and overriding various methods, but, luckily, there is a
module that already does most of the work: asynchat.

460 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

Despite the name, it isn’t designed for the type of streaming (continuous) chat application
that we’re working on. (The word “chat” in the name refers to “chat-style” or command-response
protocols.) The good thing about the async_chat class (found in the asynchat module) is that it
hides the most basic socket reading and writing operations: They can be a bit difficult to get
right. All that’s needed to make it work is to override two methods: collect_incoming_data and
found_terminator. The former is called each time a bit of text has been read from the socket,
and the latter is called when a terminator is read. The terminator (in this case) is just a line
break. (You’ll have to tell the async_chat object about that by calling set_terminator as part of
the initialization.)

An updated program, now with a ChatSession class, is shown in Listing 24-4.

Listing 24-4. Server Program with ChatSession Class

from asyncore import dispatcher
from asynchat import async_chat
import socket, asyncore

PORT = 5005

class ChatSession(async_chat):

 def __init__(self, sock):
 async_chat.__init__(self, sock)
 self.set_terminator("\r\n")
 self.data = []

 def collect_incoming_data(self, data):
 self.data.append(data)

 def found_terminator(self):
 line = ''.join(self.data)
 self.data = []
 # Do something with the line...
 print line

class ChatServer(dispatcher):

 def __init__(self, port):
 dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)
 self.sessions = []

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 461

 def handle_accept(self):
 conn, addr = self.accept()
 self.sessions.append(ChatSession(conn))

if __name__ == '__main__':
 s = ChatServer(PORT)
 try: asyncore.loop()
 except KeyboardInterrupt: print

Several things are worth noting in this new version:

• The set_terminator method is used to set the line terminator to "\r\n", which is the
commonly used line terminator in network protocols.

• The ChatSession object keeps the data it has read so far as a list of strings called data.
When more data is read, collect_incoming_data is called automatically, and it simply
appends the data to the list. Using a list of strings and later joining them (with the join
string method) is much more efficient than incrementally adding strings because each
addition would require a new string object.

• The found_terminator method is called when a terminator is found. The current imple-
mentation creates a line by joining the current data items, and resets self.data to an
empty list. However, because you don’t have anything useful to do with the line yet, it is
simply printed.

• The ChatServer keeps a list of sessions.

• The handle_accept method of the ChatServer now creates a new ChatSession object and
appends it to the list of sessions.

Try running the server and connecting with two (or more) clients simultaneously. Every
line you type in a client should be printed in the terminal where your server is running. That
means the server is now capable of handling several simultaneous connections. Now all that’s
missing is the capability for the clients to see what the others are saying!

Putting It Together
Before the prototype can be considered a fully functional (albeit simple) chat server, one main
piece of functionality is lacking: What the users say (each line they type) should be broadcast to
the others. That functionality can be implemented by a simple for loop in the server, which
loops over the list of sessions and writes the line to each of them. To write data to an async_chat
object, you use the push method.

This broadcasting behavior also adds another problem: You must make sure that connec-
tions are removed from the list when the clients disconnect. You can do that by overriding the
event handling method handle_close. The final version of the first prototype can be seen in
Listing 24-5.

462 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

Listing 24-5. A Simple Chat Server (simple_chat.py)

from asyncore import dispatcher
from asynchat import async_chat
import socket, asyncore

PORT = 5005
NAME = 'TestChat'

class ChatSession(async_chat):
 """
 A class that takes care of a connection between the server
 and a single user.
 """
 def __init__(self, server, sock):
 # Standard setup tasks:
 async_chat.__init__(self, sock)
 self.server = server
 self.set_terminator("\r\n")
 self.data = []
 # Greet the user:
 self.push('Welcome to %s\r\n' % self.server.name)

 def collect_incoming_data(self, data):
 self.data.append(data)

 def found_terminator(self):
 """
 If a terminator is found, that means that a full
 line has been read. Broadcast it to everyone.
 """
 line = ''.join(self.data)
 self.data = []
 self.server.broadcast(line)

 def handle_close(self):
 async_chat.handle_close(self)
 self.server.disconnect(self)

class ChatServer(dispatcher):
 """
 A class that receives connections and spawns individual
 sessions. It also handles broadcasts to these sessions.
 """
 def __init__(self, port, name):
 # Standard setup tasks
 dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 463

 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)
 self.name = name
 self.sessions = []

 def disconnect(self, session):
 self.sessions.remove(session)

 def broadcast(self, line):
 for session in self.sessions:
 session.push(line + '\r\n')

 def handle_accept(self):
 conn, addr = self.accept()
 self.sessions.append(ChatSession(self, conn))

if __name__ == '__main__':
 s = ChatServer(PORT, NAME)
 try: asyncore.loop()
 except KeyboardInterrupt: print

Second Implementation
The first prototype may be a fully functioning chat server, but its functionality is quite limited.
The most obvious limitation is that you can’t discern who is saying what. Also, it does not inter-
pret commands (such as say or logout), which the original specification requires. So, you need
to add support for identity (one unique name per user) and command interpretation, and you
must make the behavior of each session depend on the state it’s in (just connected, logged in,
and so on)—all of this in a manner that lends itself easily to extension.

Basic Command Interpretation
I’ll show you how to model the command interpretation on the Cmd class of the cmd module in
the standard library. (Unfortunately, you can’t use this class directly because it can only be
used with sys.stdin and sys.stdout, and you’re working with several streams.)

What you need is a function or method that can handle a single line of text (as typed by the
user). It should split off the first word (the command) and call an appropriate method based on
it. For example, the line

say Hello, world!

might result in the call

do_say('Hello, world!')

464 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

possibly with the session itself as an added argument (so do_say would know who did the
talking). Here is a simple implementation, with an added method to express that a command
is unknown:

class CommandHandler:
 """
 Simple command handler similar to cmd.Cmd from the standard
 library.
 """

 def unknown(self, session, cmd):
 session.push('Unknown command: %s\r\n' % cmd)

 def handle(self, session, line):
 if not line.strip(): return
 parts = line.split(' ', 1)
 cmd = parts[0]
 try: line = parts[1].strip()
 except IndexError: line = ''
 meth = getattr(self, 'do_'+cmd, None)
 if callable(meth):
 meth(session, line)
 else:
 self.unknown(session, cmd)

The use of getattr in this class is similar to that in Chapter 20.
With the basic command handling out of the way, you need to define some actual

commands—and which commands are available (and what they do) should depend on the
current state of the session. How do you represent that state?

Rooms
Each state can be represented by a custom command handler. This is easily combined with the
standard notion of chat rooms (or locations in a MUD). Each room is a CommandHandler with its
own specialized commands. In addition, it should keep track of which users (sessions) are
currently inside it. Here is a generic superclass for all your rooms:

class EndSession(Exception): pass

class Room(CommandHandler):
 """
 A generic environment which may contain one or more users
 (sessions). It takes care of basic command handling and
 broadcasting.
 """

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 465

 def __init__(self, server):
 self.server = server
 self.sessions = []

 def add(self, session):
 self.sessions.append(session)

 def remove(self, session):
 self.sessions.remove(session)

 def broadcast(self, line):
 for session in self.sessions:
 session.push(line)

 def do_logout(self, session, line):
 raise EndSession

In addition to the basic add and remove methods, a broadcast method simply calls push on
all of the users (sessions) in the room. There is also a single command defined—logout (in the
form of the do_logout method). It raises an exception (EndSession), which is dealt with at a
higher level of the processing (in found_terminator).

Login and Logout Rooms
In addition to representing normal chat rooms (this project includes only one such chat room),
the Room subclasses can represent other states, which was indeed the intention. For example,
when a user connects to the server, he or she is put in a dedicated LoginRoom (with no other
users in it). The LoginRoom prints a welcome message when the user enters (in the add method).
It also overrides the unknown method to tell the user to log in; the only command it responds to
is the login command, which checks whether the name is acceptable (not the empty string,
and not used by another user already).

The LogoutRoom is much simpler. Its only job is to delete the user’s name from the server
(which has a dictionary called users where the sessions are stored). If the name isn’t there
(because the user never logged in), the resulting KeyError is ignored.

For the source code of these two classes, see Listing 24-6 later in this chapter.

■Note Even though the server’s users dictionary keeps references to all the sessions, no session is ever
retrieved from it. The users dictionary is used only to keep track of which names are in use. However, instead
of using some arbitrary value (such as 1), I decided to let each user name refer to the corresponding session.
Even though there is no immediate use for it, it may be useful in some later version of the program (for example,
if one user wants to send a message privately to another). An alternative would have been to simply keep a
set or list of sessions.

466 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

The Main Chat Room
The main chat room also overrides the add and remove methods. In add, it broadcasts a message
about the user who is entering, and it adds the user’s name to the users dictionary in the server.
The remove method broadcasts a message about the user who is leaving.

In addition to these methods, the ChatRoom class implements three commands:

• The say command (implemented by do_say) broadcasts a single line, prefixed with the
name of the user who spoke.

• The look command (implemented by do_look) tells the user which users are currently in
the room.

• The who command (implemented by do_who) tells the user which users are currently
logged in. In this simple server, look and who are equivalent, but if you extend it to
contain more than one room, their functionality will differ.

For the source code, see Listing 24-6 later in this chapter.

The New Server
I’ve now described most of the functionality. The main additions to ChatSession and ChatServer
are as follows:

• ChatSession has a method called enter, which is used to enter a new room.

• The ChatSession constructor uses LoginRoom.

• The handle_close method uses LogoutRoom.

• The ChatServer constructor adds the dictionary users and the ChatRoom called main_room
to its attributes.

Notice also how handle_accept no longer adds the new ChatSession to a list of sessions
because the sessions are now managed by the rooms.

■Note In general, if you simply instantiate an object, like the ChatSession in handle_accept, without
binding a name to it or adding it to a container, it will be lost, and may be garbage collected (which means
that it will disappear completely). Because all dispatchers are handled (referenced) by asyncore (and
async_chat is a subclass of dispatcher), this is not a problem here.

The final version of the chat server is shown in Listing 24-6. For your convenience, I’ve
listed the available commands in Table 24-1. An example chat session is shown in Figure 24-1—
the server in that example was started with the command

python chatserver.py

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 467

and the user dilbert connected to the server using the command

telnet localhost 5005

Figure 24-1. A sample chat session

Listing 24-6. A Slightly More Complicated Chat Server (chatserver.py)

from asyncore import dispatcher
from asynchat import async_chat
import socket, asyncore

PORT = 5005
NAME = 'TestChat'

class EndSession(Exception): pass

class CommandHandler:
 """
 Simple command handler similar to cmd.Cmd from the standard
 library.
 """

468 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

 def unknown(self, session, cmd):
 'Respond to an unknown command'
 session.push('Unknown command: %s\r\n' % cmd)

 def handle(self, session, line):
 'Handle a received line from a given session'
 if not line.strip(): return
 # Split off the command:
 parts = line.split(' ', 1)
 cmd = parts[0]
 try: line = parts[1].strip()
 except IndexError: line = ''
 # Try to find a handler:
 meth = getattr(self, 'do_'+cmd, None)
 # If it is callable...
 if callable(meth):
 # ...call it:
 meth(session, line)
 else:
 # Otherwise, respond to the unknown command:
 self.unknown(session, cmd)

class Room(CommandHandler):
 """
 A generic environment that may contain one or more users
 (sessions). It takes care of basic command handling and
 broadcasting.
 """

 def __init__(self, server):
 self.server = server
 self.sessions = []

 def add(self, session):
 'A session (user) has entered the room'
 self.sessions.append(session)

 def remove(self, session):
 'A session (user) has left the room'
 self.sessions.remove(session)

 def broadcast(self, line):
 'Send a line to all sessions in the room'
 for session in self.sessions:
 session.push(line)

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 469

 def do_logout(self, session, line):
 'Respond to the logout command'
 raise EndSession

class LoginRoom(Room):
 """
 A room meant for a single person who has just connected.
 """

 def add(self, session):
 Room.add(self, session)
 # When a user enters, greet him/her:
 self.broadcast('Welcome to %s\r\n' % self.server.name)

 def unknown(self, session, cmd):
 # All unknown commands (anything except login or logout)
 # results in a prodding:
 session.push('Please log in\nUse "login <nick>"\r\n')

 def do_login(self, session, line):
 name = line.strip()
 # Make sure the user has entered a name:
 if not name:
 session.push('Please enter a name\r\n')
 # Make sure that the name isn't in use:
 elif name in self.server.users:
 session.push('The name "%s" is taken.\r\n' % name)
 session.push('Please try again.\r\n')
 else:
 # The name is OK, so it is stored in the session, and
 # the user is moved into the main room.
 session.name = name
 session.enter(self.server.main_room)

class ChatRoom(Room):
 """
 A room meant for multiple users who can chat with the others in
 the room.
 """

 def add(self, session):
 # Notify everyone that a new user has entered:
 self.broadcast(session.name + ' has entered the room.\r\n')
 self.server.users[session.name] = session
 Room.add(self, session)

470 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

 def remove(self, session):
 Room.remove(self, session)
 # Notify everyone that a user has left:
 self.broadcast(session.name + ' has left the room.\r\n')

 def do_say(self, session, line):
 self.broadcast(session.name+': '+line+'\r\n')

 def do_look(self, session, line):
 'Handles the look command, used to see who is in a room'
 session.push('The following are in this room:\r\n')
 for other in self.sessions:
 session.push(other.name + '\r\n')

 def do_who(self, session, line):
 'Handles the who command, used to see who is logged in'
 session.push('The following are logged in:\r\n')
 for name in self.server.users:
 session.push(name + '\r\n')

class LogoutRoom(Room):
 """
 A simple room for a single user. Its sole purpose is to remove
 the user's name from the server.
 """

 def add(self, session):
 # When a session (user) enters the LogoutRoom it is deleted
 try: del self.server.users[session.name]
 except KeyError: pass

class ChatSession(async_chat):
 """
 A single session, which takes care of the communication with a
 single user.
 """

 def __init__(self, server, sock):
 async_chat.__init__(self, sock)
 self.server = server
 self.set_terminator("\r\n")
 self.data = []
 self.name = None
 # All sessions begin in a separate LoginRoom:
 self.enter(LoginRoom(server))

C H A P T E R 2 4 ■ P R O J E C T 5 : A V I R T U A L T E A P A R T Y 471

 def enter(self, room):
 # Remove self from current room and add self to
 # next room...
 try: cur = self.room
 except AttributeError: pass
 else: cur.remove(self)
 self.room = room
 room.add(self)

 def collect_incoming_data(self, data):
 self.data.append(data)

 def found_terminator(self):
 line = ''.join(self.data)
 self.data = []
 try: self.room.handle(self, line)
 except EndSession:
 self.handle_close()

 def handle_close(self):
 async_chat.handle_close(self)
 self.enter(LogoutRoom(self.server))

class ChatServer(dispatcher):
 """
 A chat server with a single room.
 """

 def __init__(self, port, name):
 dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)
 self.name = name
 self.users = {}
 self.main_room = ChatRoom(self)

 def handle_accept(self):
 conn, addr = self.accept()
 ChatSession(self, conn)

if __name__ == '__main__':
 s = ChatServer(PORT, NAME)
 try: asyncore.loop()
 except KeyboardInterrupt: print

472 C H A P T E R 2 4 ■ P R O JE C T 5 : A V I R T U A L T E A P A R T Y

Further Exploration
You can do a lot to extend and enhance the basic server presented in this chapter:

• You could make a version with multiple chat rooms, and you could extend the command
set to make it behave in any way you want.

• You might want to make the program recognize only certain commands (such as login
or logout) and treat all other text entered as general chatting, thereby avoiding the need
for a say command.

• You could prefix all commands with a special character (for example, a slash, giving
commands like /login and /logout) and treat everything that doesn’t start with the
specified character as general chatting.

• You might want to create your own GUI client—but that’s a bit trickier than it might
seem. The server has one event loop, and the GUI toolkit will have another. To make
them cooperate, you will need to use threading. (For an example of how this can be done
in simple cases where the various threads don’t directly access each other’s data, see
Chapter 28.)

What Now?
Now you’ve got your very own chat server. In the next project you tackle a different type of
network programming: CGI, the mechanism underlying most Web applications (as discussed
in Chapter 15). The specific application of this technology in the next project is remote editing,
which enables several users to collaborate on developing the same document. You may even
use it to edit your own Web pages remotely.

Table 24-1. The Commands Available in the Chat Server

Command Available In . . . Description

login name Login room Used to log into the server

logout All rooms Used to log out of the server

say statement Chat room(s) Used to say something

look Chat room(s) Used to find out who is in the same room

who Chat room(s) Used to find out who is logged on to the server

473

■ ■ ■

C H A P T E R 2 5

Project 6: Remote Editing
with CGI

This project uses CGI, which is discussed in more detail in Chapter 15. The specific application is
remote editing—editing a document on another machine via the Web. This can be useful in
collaboration systems (groupware), for example, where several people may be working on the
same document. It can also be useful for updating your Web pages.

What’s the Problem?
The problem is quite simple: You have a document stored on one machine and want to be able
to edit it from another machine via the Web. This enables you to have a shared document edited
by several collaborating authors—you won’t need to use FTP or similar file transfer technologies,
and you won’t need to worry about synchronizing multiple copies. To edit the file, all you need
is a browser.

■Note This sort of remote editing is one of the core mechanisms of wikis (see, for example, http://
en.wikipedia.org/wiki/Wiki).

Specific Goals
The system should be able to do the following:

• Display the document as a normal Web page.

• Display the document in a text area in a Web form.

• Let you save the text from the form.

• Protect the document with a password.

• Be easily extensible to more than one document.

474 C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I

As you’ll see, all of this is quite easy to do with the standard Python library module cgi and
some plain Python coding. However, the techniques used in this application can be used for
creating Web interfaces to all of your Python programs—pretty useful. (For example, you use
the same CGI techniques in Chapter 15.)

Useful Tools
The main tool when writing CGI programs is, as discussed in Chapter 15, the cgi module, along
with the cgitb module for debugging. See Chapter 15 for more information.

Preparations
The steps needed for making your CGI script accessible through the Web are described in detail
in Chapter 15 in the section “Dynamic Web Pages with CGI.” Just follow those steps, and you
should be fine.

First Implementation
The first implementation is based on the basic structure of the greeting script shown in
Listing 15-7 (Chapter 15). All that’s needed for the first prototype is some file handling...

For the script to be useful, it must store the edited text between invocations. Also, the
form should be made a bit bigger than in the greeting script (simple3.cgi from Listing 15-7 in
Chapter 15) and the text field should be changed into a text area. You should also use the POST
CGI method instead of the default GET method. (Using POST is normally the thing to do if you
are submitting large amounts of data.)

The general logic of the program is as follows:

1. Get the CGI parameter text with the current value of the data file as the default.

2. Save the text to the data file.

3. Print out the form, with the text in the textarea.

In order for the script to be allowed to write to your data file, you must first create such a
file (for example, simple_edit.dat). It can be empty or perhaps contain the initial document
(a plain text file, possibly containing some form of markup such as XML or HTML). Then you
must set the permissions so that it is universally writable, as described in Chapter 15. The
resulting code is shown in Listing 25-1.

Listing 25-1. A Simple Web Editor (simple_edit.cgi)

#!/usr/bin/env python

import cgi
form = cgi.FieldStorage()

C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I 475

text = form.getvalue('text', open('simple_edit.dat').read())
f = open('simple_edit.dat', 'w')
f.write(text)
f.close()

print """Content-type: text/html

<html>
 <head>
 <title>A Simple Editor</title>
 </head>
 <body>
 <form action='simple_edit.cgi' method='POST'>
 <textarea rows='10' cols='20' name='text'>%s</textarea>

 <input type='submit' />
 </form>
 </body>
</html>
""" % text

When accessed through a Web server, the CGI script checks for an input value called text.
If such a value is submitted, the text is written to the file simple_edit.dat. The default value is
the file’s current contents. Finally, a Web page (containing the field for editing and submitting
the text) is shown. A screenshot of this page is shown in Figure 25-1.

Figure 25-1. The simple_edit.cgi script in action

476 C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I

Second Implementation
Now that you’ve gotten the first prototype on the road, what’s missing? The system should be
able to edit more than one file, and it should use password protection. (Because the document
can be viewed by opening it directly in a browser, you won’t be paying much attention to the
viewing part of the system.)

The main difference from the first prototype is that you’ll split the functionality into several
scripts—one for each “action” your system should be able to perform:

index.html: This isn’t a script. It’s just a plain Web page with a form where you can enter a
file name. It also has an Open button, which triggers edit.cgi.

edit.cgi: Displays a given file in a text area; has a text field for password entry and a Save
button, which triggers save.cgi.

save.cgi: Saves the text it receives to a given file and displays a simple message (for example,
“The file has been saved”). This script should also take care of the password checking.

index.html
The file index.html is an HTML file that contains the form used to enter a file name:

<html>
 <head>
 <title>File Editor</title>
 </head>
 <body>
 <form action='edit.cgi' method='POST'>
 File name:

 <input type='text' name='filename' />
 <input type='submit' value='Open' />
 </body>
</html>

Note how the text field is named “filename”—that ensures its contents will be supplied as
the CGI parameter filename to the edit.cgi script (which is the action attribute of the form
tag). If you open this file in a browser, enter a file name in the text field, and click Open, the
edit.cgi script will be run.

edit.cgi
The page displayed by edit.cgi should include a text area containing the current text of the file
you’re editing, and a text field for entering a password. The only input needed is the file name,
which the script receives from the form in index.html. Note, however, that it is fully possible to
open the edit.cgi script directly, without submitting the form in index.html. In that case, you
have no guarantee that the filename field of cgi.FieldStorage is set. So you have to add a check
to ensure that there is a file name. If there is, the file will be opened from a directory that contains
the files that may be edited. Let’s call the directory data. (You will, of course, have to create this
directory.)

C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I 477

■Caution Note that by supplying a file name that contains path elements such as .. (“dot-dot”), it may be
possible to access files outside this directory. To make sure that the files accessed are within the given directory,
you should perform some extra checking, such as listing all the files in the directory (using the glob module,
for example) and checking that the supplied file name is one of the candidate files (making sure you use full,
absolute path names all around). See the section “Validating File Names” in Chapter 27 for another approach.

The code, then, becomes something like Listing 25-2.

Listing 25-2. The Editor Script (edit.cgi)

#!/usr/bin/env python

print 'Content-type: text/html\n'

from os.path import join, abspath
import cgi, sys

BASE_DIR = abspath('data')

form = cgi.FieldStorage()
filename = form.getvalue('filename')
if not filename:
 print 'Please enter a file name'
 sys.exit()
text = open(join(BASE_DIR, filename)).read()

print """
<html>
 <head>
 <title>Editing...</title>
 </head>
 <body>
 <form action='save.cgi' method='POST'>
 File: %s

 <input type='hidden' value='%s' name='filename' />
 Password:

 <input name='password' type='password' />

 Text:

 <textarea name='text' cols='40' rows='20'>%s</textarea>

 <input type='submit' value='Save' />
 </form>
 </body>
</html>
""" % (filename, filename, text)

478 C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I

Note that the abspath function has been used to get the absolute path of the data directory.
Also note that the file name has been stored in a hidden form element so that it will be relayed
to the next script (save.cgi) without giving the user an opportunity to change it. (You have no
guarantees of that, of course, because the user may write his or her own forms, put them on
another machine, and have them call your CGI scripts with custom values.)

For password handling, the example code uses an input element of type password rather
than text, which means that the characters entered will all be displayed as asterisks.

■Note This script is based on the assumption that the file name given refers to an existing file. Feel free to
extend it so that it can handle other cases as well.

save.cgi
The script that performs the saving is the last component of this simple system. It receives a file
name, a password, and some text. It checks that the password is correct, and if it is, the program
stores the text in the file with the given file name. (The file should have its permissions set properly.
See the discussion in Chapter 15 in the section “Step 3. Setting the File Permission.”)

Just for fun, you’ll use the sha module in the password handling. SHA (Secure Hash Algorithm)
is a way of extracting an essentially meaningless string of seemingly random data (a “digest”)
from an input string. The idea behind the algorithm is that it is almost impossible to construct
a string that has a given digest, so if you know the digest of a password (for example), there is
no (easy) way you can reconstruct the password or invent one that will reproduce the digest.
This means that you can safely compare the digest of a supplied password with a stored digest
(of the correct password) instead of comparing the passwords themselves. By using this approach,
you don’t have to store the password itself in the source code, and someone reading the code
would be none the wiser about what the password actually was.

■Caution As I said, this “security” feature is mainly for fun. Unless you are using a secure connection with
SSL or some similar technology (which is beyond the scope of this project), it is still possible to pick up the
password being submitted over the network.

Here is an example of how you can use sha:

>> from sha import sha
>> sha('foobar').hexdigest()
'8843d7f92416211de9ebb963ff4ce28125932878'
>> sha('foobaz').hexdigest()
'21eb6533733a5e4763acacd1d45a60c2e0e404e1'

C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I 479

As you can see, a small change in the password gives you a completely different digest. You
can see the code for save.cgi in Listing 25-3.

Listing 25-3. The Saving Script (save.cgi)

#!/usr/bin/env python

print 'Content-type: text/html\n'

from os.path import join, abspath
import cgi, sha, sys

BASE_DIR = abspath('data')

form = cgi.FieldStorage()

text = form.getvalue('text')
filename = form.getvalue('filename')
password = form.getvalue('password')

if not (filename and text and password):
 print 'Invalid parameters.'
 sys.exit()

if sha.sha(password).hexdigest() != '8843d7f92416211de9ebb963ff4ce28125932878':
 print 'Invalid password'
 sys.exit()

f = open(join(BASE_DIR,filename), 'w')
f.write(text)
f.close()

print 'The file has been saved.'

Running the Editor
Follow these steps to use the editor:

1. Open the page index.html in a Web browser. Be sure to open it through a Web server (by
using a URL of the form http://www.someserver.com/index.html) and not as a local file.
The result is shown in Figure 25-2.

480 C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I

Figure 25-2. The opening page of the CGI editor

2. Enter a file name of a file that your CGI editor is permitted to modify, and click Open. Your
browser should then contain the output of the edit.cgi script, as shown in Figure 25-3.

Figure 25-3. The editing page of the CGI editor

C H A P T E R 2 5 ■ P R O J E C T 6 : R E M O T E E D I T I N G W I T H C G I 481

3. Edit the file to taste, enter the password (one you’ve set yourself, or the one used in
the example, which is “foobar”), and click Save. Your browser should then contain the
output of the save.cgi script, which is simply the message “The file has been saved.”

4. If you want to verify that the file has been modified, you may repeat the process of
opening the file (Steps 1 and 2).

Further Exploration
With the techniques shown in this project, you can develop all kinds of Web systems. Some
possible additions to the existing system are as follows:

• Version control: Save old copies of the edited file so you can “undo” your changes.

• Add support for user names so you know who changed what.

• Add file locking (for example, with the fcntl module) so two users can’t edit the file at
the same time.

• Add a view.cgi script that automatically adds markup to the files (like the one in Chapter 20).

• Make the scripts more robust by checking their input more thoroughly and adding more
user-friendly error messages.

• Avoid printing a confirmation message like “The file has been saved.” You can either add
some more useful output, or redirect the user to another page/script. Redirection can be
done with the Location header, which works like Content-type. Just add Location: followed
by a space and a URL to the header section of the output (before the first empty line).

In addition to expanding the capabilities of this CGI system, you might want to check out
some more complex Web environments for Python (as discussed in Chapter 15).

What Now?
Now you’ve tried your hand at writing CGI scripts. In the next project, you expand on that by
using an SQL database for storage. With that powerful combination, you’ll implement a fully
functional Web-based bulletin board.

483

■ ■ ■

C H A P T E R 2 6

Project 7: Your Own
Bulletin Board

Many kinds of software enable you to communicate with other people over the Internet.
You’ve seen a few already (for example, the Usenet groups in Chapter 23 and the chat server in
Chapter 24), and in this chapter you will implement another such system: a Web-based
discussion forum.

What’s the Problem?
In this project, you create a simple system for posting and responding to messages via the Web.
This has utility in itself, as a discussion forum. One famous example of such a forum is Slashdot
(http://slashdot.org). The system developed in this chapter is quite simple, but the basic
functionality is there, and it should be capable of handling quite a large number of postings.

However, the material covered in this chapter has uses beyond developing stand-alone
discussion forums. It could be used to implement a more general system for collaboration, for
example, or an issue tracking system, or something completely different. The combination
of CGI (or similar technologies) and a solid database (in this case, an SQL database) is quite
powerful and versatile.

■Tip Even though it’s fun and educational to write your own software, in many cases it’s more cost effective
to search for existing software. In the case of discussion forums and the like, chances are that you can find
quite a few well-developed systems freely available already.

Specific Goals
The final system should support the following:

• Displaying the subjects of all current messages

• Message threading (displaying replies indented under the message they reply to)

• Viewing existing messages

484 C H A P T E R 2 6 ■ P R O JE C T 7 : Y O U R O W N B U L L E T I N B O A R D

• Posting new messages

• Replying to existing messages

In addition to these functional requirements, it would be nice if the system was reasonably
stable, could handle a large number of messages, and avoided such problems as two users
writing to the same file at the same time. The desired robustness can be achieved by using a
database server of some sort, instead of writing the file-handling code yourself.

Useful Tools
In addition to the CGI stuff from Chapter 15, you’ll need an SQL database, as discussed in
Chapter 13. You could either use the stand-alone database SQLite, which is used in that chapter,
or you could use some other system, such as either of the following two excellent, freely
available databases:

• PostgreSQL (http://www.postgresql.org)

• MySQL (http://www.mysql.org)

In this chapter, I use PostgreSQL for the examples, but the code should work with most
SQL databases (including MySQL) with few edits.

Before moving on, you should make sure that you have access to an SQL database server
and check its documentation for instructions on how to manage it.

In addition to the database server itself, you’ll need a Python module that can interface
with the server (and hide the details from you). Most such modules support the Python DB-API,
which is discussed in more detail in Chapter 13. In this chapter, I use psycopg (http://initd.org/
Software/psycopg), a robust front-end for PostgreSQL. If you’re using MySQL, the MySQLdb
module (http://sourceforge.net/projects/mysql-python) is a good choice.

After you have installed your database module, you should be able to import it without
raising any exceptions. For psycopg:

>>> import psycopg
>>>

For MySQLdb:

>>> import MySQLdb
>>>

You get the idea.

Preparations
Before your program can start using your database, you have to actually create the database.
That is done using SQL (see Chapter 13 for some pointers on this).

The database structure is intimately linked with the problem and can be a bit tricky to
change once you’ve created it and populated it with data (messages). Let’s keep it simple:
You’ll have only one table, which will contain one row for each message. Each message will
have a unique ID (an integer), a subject, a sender (or poster), and some text (the body).

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 485

In addition, because you want to be able to display the messages hierarchically (threading),
each message should store a reference to the message it is a reply to. The resulting CREATE TABLE
SQL command is shown in Listing 26-1.

Listing 26-1. Creating the Database in PostgreSQL

CREATE TABLE messages (
 id SERIAL PRIMARY KEY,
 subject TEXT NOT NULL,
 sender TEXT NOT NULL,
 reply_to INTEGER REFERENCES messages,
 text TEXT NOT NULL
);

Note that this command uses some PostgreSQL-specific features (serial, which ensures
that each message automatically receives a unique ID, the text data type, and references,
which makes sure that reply_to contains a valid message ID). A more MySQL-friendly version
is shown in Listing 26-2.

Listing 26-2. Creating the Database in MySQL

CREATE TABLE messages (
 id INT NOT NULL AUTO_INCREMENT,
 subject VARCHAR(100) NOT NULL,
 sender VARCHAR(15) NOT NULL,
 reply_to INT,
 text MEDIUMTEXT NOT NULL,
 PRIMARY KEY(id)
);

I’ve kept these code snippets simple (an SQL guru would certainly find ways to improve
them) because the focus of this chapter is, after all, the Python code. The SQL statements create
a new table with the following five fields (columns):

id: Used to identify the individual messages. Each message automatically receives a unique
id by the database manager, so you don’t have to worry about assigning those from your
Python code.

subject: A string that contains the subject of the message.

sender: A string that contains the sender’s name or e-mail address or something like that.

reply_to: If the message is a reply to another message, this field contains the id of the
other message. (Otherwise, the field won’t contain anything.)

text: A string that contains the body of the message.

When you’ve created this database and set the permissions on it so that your Web server is
allowed to read its contents and insert new rows, you’re ready to start coding the CGI.

486 C H A P T E R 2 6 ■ P R O JE C T 7 : Y O U R O W N B U L L E T I N B O A R D

First Implementation
In this project, the first prototype will be very limited. It will be a single script that uses the data-
base functionality so that you can get a feel for how it works. Once you’ve got that pegged, writing
the other necessary scripts won’t be very hard. In many ways, this is just a short reminder of the
material covered in Chapter 13.

The CGI part of the code is very similar to that in Chapter 25. If you haven’t read that
chapter yet, you might want to take a look at it. You should also be sure to review the section
“CGI Security Risks” in Chapter 15.

■Caution In the CGI scripts in this chapter, I’ve imported and enabled the cgitb module. This is very
useful to uncover flaws in your code, but you should probably remove the call to cgitb.enable before
deploying the software—you probably wouldn’t want an ordinary user to face a full cgitb traceback.

The first thing you need to know is how the DB API works. If you haven’t read Chapter 13,
you probably should at least skim through it now. If you’d rather just press on, here is the core
functionality again (replace db with the name of your database module—for example, psycopg
or MySQLdb):

conn = db.connect('user=foo dbname=bar'): Connects to the database named bar as user
foo and assigns the returned connection object to conn. (Note that the parameter to connect
is a string.)

■Caution In this project, I assume that you have a dedicated machine on which the database and Web
server run. The given user (foo) should only be allowed to connect from that machine to avoid unwanted
access. If you have other users on your machine, you should probably protect your database with a password,
which may also be supplied in the parameter string to connect. To find out more about this, you should
consult the documentation for your database (and your Python database module).

curs = conn.cursor(): Gets a cursor object from the connection object. The cursor is used
to actually execute SQL statements and fetch the results.

conn.commit(): Commits the changes caused by the SQL statements since the last commit.

conn.close(): Closes the connection.

curs.execute(sql_string): Executes an SQL statement.

curs.fetchone(): Fetches one result row as a sequence—for example, a tuple.

curs.dictfetchone(): Fetches one result row as a dictionary. (Not part of the standard,
and therefore not available in all modules.)

curs.fetchall(): Fetches all result rows as a sequence of sequences—for example, a list
of tuples.

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 487

curs.dictfetchall(): Fetches all result rows as a sequence (for example, a list) of dictionaries.
(Not part of the standard, and therefore not available in all modules.)

Here is a simple test (assuming psycopg)—retrieving all the messages in the database
(which is currently empty, so you won’t get any):

>>> import psycopg
>>> conn = psycopg.connect('user=foo dbname=bar')
>>> curs = conn.cursor()
>>> curs.execute('SELECT * FROM messages')
>>> curs.fetchall()
[]

Because you haven’t implemented the Web interface yet, you have to enter messages
manually if you want to test the database. You can do that either through an administrative
tool (such as mysql for MySQL or psql for PostgreSQL), or you can use the Python interpreter
with your database module.

Here is a useful piece of code you can use for testing purposes:

addmessage.py

import psycopg
conn = psycopg.connect('user=foo dbname=bar')
curs = conn.cursor()

reply_to = raw_input('Reply to: ')
subject = raw_input('Subject: ')
sender = raw_input('Sender: ')
text = raw_input('Text: ')

if reply_to:
 query = """
 INSERT INTO messages(reply_to, sender, subject, text)
 VALUES(%s, '%s', '%s', '%s')""" % (reply_to, sender, subject, text)
else:
 query = """
 INSERT INTO messages(sender, subject, text)
 VALUES('%s', '%s', '%s')""" % (sender, subject, text)

curs.execute(query)
conn.commit()

Note that this code is a bit crude—it doesn’t keep track of IDs for you (you’ll have to make
sure that what you enter as reply_to, if anything, is a valid ID), and it doesn’t deal properly with
text containing single quotes (this can be problematic because single quotes are used as string
delimiters in SQL). These issues will be dealt with in the final system, of course.

Try to add a few messages and examine the database at the interactive Python prompt—
if everything seems okay, it’s time to write a CGI script that accesses the database.

488 C H A P T E R 2 6 ■ P R O JE C T 7 : Y O U R O W N B U L L E T I N B O A R D

Now that you’ve got the database handling code figured out and some ready-made CGI
code you can pinch from Chapter 25, writing a script for viewing the message subjects (a simple
version of the “main page” of the forum) shouldn’t be too hard. You must do the standard CGI
setup (in this case, mainly printing the Content-type string), do the standard database setup
(get a connection and a cursor), execute a simple SQL select command to get all the messages,
and then retrieve the resulting rows with curs.fetchall or curs.dictfetchall.

Listing 26-3 shows a script that does these things. The only really new stuff in the listing is
the formatting code, which is used to get the threaded look where replies are displayed below
and to the right of the messages they are replies to.

It basically works like this:

1. For each message, get the reply_to field. If it is None (not a reply), add the message to the
list of top-level messages. Otherwise, append the message to the list of children kept in
children[parent_id].

2. For each top-level message, call format.

The format function prints the subject of the message. Also, if the message has any children,
it opens a blockquote element (HTML), calls format (recursively) for each child, and ends the
blockquote element.

If you open the script in your Web browser (see Chapter 15 for information on how to run
CGI scripts), you should see a threaded view of all the messages you’ve added (or their subjects,
anyway).

For an idea of what the bulletin board looks like, see Figure 26-1 later in this chapter.

Listing 26-3. The Main Bulletin Board (simple_main.cgi)

#!/usr/bin/python

print 'Content-type: text/html\n'

import cgitb; cgitb.enable()

import psycopg
conn = psycopg.connect('dbname=foo user=bar')
curs = conn.cursor()

print """
<html>
 <head>
 <title>The FooBar Bulletin Board</title>
 </head>
 <body>
 <h1>The FooBar Bulletin Board</h1>
 """

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 489

curs.execute('SELECT * FROM messages')
rows = curs.dictfetchall()

toplevel = []
children = {}

for row in rows:
 parent_id = row['reply_to']
 if parent_id is None:
 toplevel.append(row)
 else:
 children.setdefault(parent_id,[]).append(row)

def format(row):
 print row['subject']
 try: kids = children[row['id']]
 except KeyError: pass
 else:
 print '<blockquote>'
 for kid in kids:
 format(kid)
 print '</blockquote>'

print '<p>'

for row in toplevel:
 format(row)

print """
 </p>
 </body>
</html>
"""

■Tip If, for some reason, you can’t get the program to work, it may be that you haven’t set up your database
properly. You should consult the documentation for your database to see what is needed in order to let a given
user connect and to modify the database. You may, for example, have to list the IP address of the connecting
machine explicitly.

Second Implementation
The first implementation was quite limited in that it didn’t even allow users to post messages.
In this section, you expand on the simple system in the first prototype, which contains the

490 C H A P T E R 2 6 ■ P R O JE C T 7 : Y O U R O W N B U L L E T I N B O A R D

basic structure for the final version. Some measures will be added to check the supplied
parameters (such as checking whether reply_to is really a number, and whether the required
parameters are really supplied), but you should note that making a system like this robust and
user-friendly is a tough task. If you intend to use the system (or, I hope, an improved version of
your own), you should be prepared to work quite a bit on these issues.

But before you can even think of improving stability, you need something that works, right?
So—where do you begin? How do you structure the system?

A simple way of structuring Web programs (using technologies such as CGI) is to have
one script per action performed by the user. In the case of this system, that would mean the
following scripts:

main.cgi: Displays the subjects of all messages (threaded) with links to the articles themselves.

view.cgi: Displays a single article, and contains a link that will let you reply to it.

edit.cgi: Displays a single article in editable form (with text fields and text areas, just like
in Chapter 25). Its Submit button is linked to the save script.

save.cgi: Receives information about an article (from edit.cgi) and saves it by inserting a
new row into the database table.

Let’s deal with these separately.

main.cgi
This script is very similar to the simple_main.cgi script from the first prototype. The main
difference is the addition of links. Each subject will be a link to a given message (to view.cgi),
and at the bottom of the page you’ll add a link that allows the user to post a new message (a link
to edit.cgi).

Take a look at the code in Listing 26-4. The line containing the link to each article (part of
the format function) looks like this:

 print '<p>%(subject)s</p>' % row

Basically, it creates a link to view.cgi?id=someid where someid is the id of the given row. This
syntax (the question mark and key=val) is simply a way of passing parameters to a CGI script—that
means if someone clicks this link, they are taken to view.cgi with the id parameter properly set.

The “Post message” link is just a link to edit.cgi.
So, let’s see how view.cgi handles the id parameter.

Listing 26-4. The Main Bulletin Board (main.cgi)

#!/usr/bin/python

print 'Content-type: text/html\n'

import cgitb; cgitb.enable()

import psycopg
conn = psycopg.connect('dbname=foo user=bar')

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 491

curs = conn.cursor()

print """
<html>
 <head>
 <title>The FooBar Bulletin Board</title>
 </head>
 <body>
 <h1>The FooBar Bulletin Board</h1>
 """

curs.execute('SELECT * FROM messages')
rows = curs.dictfetchall()

toplevel = []
children = {}

for row in rows:
 parent_id = row['reply_to']
 if parent_id is None:
 toplevel.append(row)
 else:
 children.setdefault(parent_id,[]).append(row)

def format(row):
 print '<p>%(subject)s</p>' % row
 try: kids = children[row['id']]
 except KeyError: pass
 else:
 print '<blockquote>'
 for kid in kids:
 format(kid)
 print '</blockquote>'

print '<p>'

for row in toplevel:
 format(row)

print """
 </p>
 <hr />
 <p>Post message</p>
 </body>
</html>
"""

492 C H A P T E R 2 6 ■ P R O JE C T 7 : Y O U R O W N B U L L E T I N B O A R D

view.cgi
The view script uses the supplied CGI parameter id to retrieve a single message from the data-
base. It then formats a simple HTML page with the resulting values. This page also contains a
link back to the main page (main.cgi) and, perhaps more interestingly, to edit.cgi, but this
time with the reply_to parameter set to id to ensure that the new message will be a reply to the
current one. See Listing 26-5 for the code of view.cgi.

Listing 26-5. The Message Viewer (view.cgi)

#!/usr/bin/python

print 'Content-type: text/html\n'

import cgitb; cgitb.enable()

import psycopg
conn = psycopg.connect('dbname=foo user=bar')
curs = conn.cursor()

import cgi, sys
form = cgi.FieldStorage()
id = form.getvalue('id')

print """
<html>
 <head>
 <title>View Message</title>
 </head>
 <body>
 <h1>View Message</h1>
 """

try: id = int(id)
except:
 print 'Invalid message ID'
 sys.exit()

curs.execute('SELECT * FROM messages WHERE id = %i' % id)
rows = curs.dictfetchall()

if not rows:
 print 'Unknown message ID'
 sys.exit()

row = rows[0]

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 493

print """
 <p>Subject: %(subject)s

 Sender: %(sender)s

 <pre>%(text)s</pre>
 </p>
 <hr />
 Back to the main page
 | Reply
 </body>
</html>
""" % row

edit.cgi
The edit script actually performs a dual function—it is used to edit new messages, but also to
edit replies. The difference isn’t all that great: If a reply_to is supplied in the CGI request, it is
kept in a hidden input in the edit form. Also, the subject is set to "Re: parentsubject" by default
(unless the subject already begins with "Re:"—you don’t want to keep adding those). Here is
the code snippet that takes care of these details:

subject = ''
if reply_to is not None:
 print '<input type="hidden" name="reply_to" value="%s"/>' % reply_to
 curs.execute('SELECT subject FROM messages WHERE id = %s' % reply_to)
 subject = curs.fetchone()[0]
 if not subject.startswith('Re: '):
 subject = 'Re: ' + subject

■Tip Hidden inputs are used to temporarily store information in a Web form. They don’t show up to the user
as text areas and the like do, but their value is still passed to the CGI script that is the action of the form. That
way the script that generates the form can pass information to the script that will eventually process the
same form.

Listing 26-6 shows the source code for the edit script.

Listing 26-6. The Message Editor (edit.cgi)

#!/usr/bin/python

print 'Content-type: text/html\n'

import cgitb; cgitb.enable()

494 C H A P T E R 2 6 ■ P R O JE C T 7 : Y O U R O W N B U L L E T I N B O A R D

import psycopg
conn = psycopg.connect('dbname=foo user=bar')
curs = conn.cursor()

import cgi, sys
form = cgi.FieldStorage()
reply_to = form.getvalue('reply_to')

print """
<html>
 <head>
 <title>Compose Message</title>
 </head>
 <body>
 <h1>Compose Message</h1>

 <form action='save.cgi' method='POST'>
 """

subject = ''
if reply_to is not None:
 print '<input type="hidden" name="reply_to" value="%s"/>' % reply_to
 curs.execute('SELECT subject FROM messages WHERE id = %s' % reply_to)
 subject = curs.fetchone()[0]
 if not subject.startswith('Re: '):
 subject = 'Re: ' + subject

print """
 Subject:

 <input type='text' size='40' name='subject' value='%s' />

 Sender:

 <input type='text' size='40' name='sender' />

 Message:

 <textarea name='text' cols='40' rows='20'></textarea>

 <input type='submit' value='Save'/>
 </form>
 <hr />
 Back to the main page'
 </body>
</html>
""" % subject

save.cgi
Now on to the final script. The save script will receive information about a message (from the
form generated by edit.cgi) and will store it in the database. That means using an SQL insert

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 495

command, and because the database has been modified, conn.commit must be called so the
changes aren’t lost when the script terminates.

Listing 26-7 shows the source code for the save script.

Listing 26-7. The Save Script (save.cgi)

#!/usr/bin/python

print 'Content-type: text/html\n'

import cgitb; cgitb.enable()

def quote(string):
 if string:
 return string.replace("'", "\\'")
 else:
 return string

import psycopg
conn = psycopg.connect('dbname=foo user=bar')
curs = conn.cursor()

import cgi, sys
form = cgi.FieldStorage()

sender = quote(form.getvalue('sender'))
subject = quote(form.getvalue('subject'))
text = quote(form.getvalue('text'))
reply_to = form.getvalue('reply_to')

if not (sender and subject and text):
 print 'Please supply sender, subject, and text'
 sys.exit()

if reply_to is not None:
 query = """
 INSERT INTO messages(reply_to, sender, subject, text)
 VALUES(%i, '%s', '%s', '%s')""" % (int(reply_to), sender, subject, text)
else:
 query = """
 INSERT INTO messages(sender, subject, text)
 VALUES('%s', '%s', '%s')""" % (sender, subject, text)

curs.execute(query)
conn.commit()

496 C H A P T E R 2 6 ■ P R O JE C T 7 : Y O U R O W N B U L L E T I N B O A R D

print """
<html>
 <head>
 <title>Message Saved</title>
 </head>
 <body>
 <h1>Message Saved</h1>
 <hr />
 Back to the main page
 </body>
</html>s
"""

Trying It Out
To test this system, start by opening main.cgi. From there, click the “Post message” link. That
should take you to edit.cgi. Enter some values in all the fields and click the “Save” link.
That should take you to save.cgi, which will display the message “Message Saved.” Click the
“Back to the main page” link to get back to main.cgi. The listing should now include your new
message.

To view your message, simply click its subject—that should take you to view.cgi with the
correct ID. From there, try to click the “Reply” link, which should take you to edit.cgi once again,
but this time with reply_to set (in a hidden input tag) and with a default subject. Once again,
enter some text, click “Save,” and go back to the main page. It should now show your reply,
displayed under the original subject. (If it’s not showing, try to reload the page.)

The main page is shown in Figure 26-1, the message viewer in Figure 26-2, and the message
composer in Figure 26-3.

Figure 26-1. The main page

C H A P T E R 2 6 ■ P R O J E C T 7 : Y O U R O W N B U L L E T I N B O A R D 497

Figure 26-2. The message viewer

Figure 26-3. The message composer

498 C H A P T E R 2 6 ■ P R O JE C T 7 : Y O U R O W N B U L L E T I N B O A R D

Further Exploration
Now that you have the power to develop huge and powerful Web applications with reliable and
efficient storage, there are lots of things you can sink your teeth into:

• How about making a Web front-end to a database of your favorite Monty Python sketches?

• If you’re interested in improving the system in this chapter, you should think about
abstraction. How about creating a utility module with a function to print a standard
header and another to print a standard footer? That way you wouldn’t have to write the
same HTML stuff in each script. Also, it might be useful to add a user database with some
password handling or abstract away the code for creating a connection.

• If you’d like a storage solution that doesn’t require a dedicated server, you could use
SQLite (which is used in Chapter 13), or you might want to check out Metakit, a really
neat little database package that also lets you store an entire database in a single file
(http://equi4.com/metakit/python.html).

• Yet another alternative is the Berkeley DB (http://www.sleepycat.com), which is quite
simple but can handle astonishing amounts of data very efficiently. (The Berkeley DB is
accessible, when installed, through the standard library modules bsddb, dbhash, and anydbm.)

What Now?
If you think writing your own discussion forum software is cool, how about writing your own
peer-to-peer file sharing program, like Napster or BitTorrent? Well, in the next project, that’s
exactly what you’ll do—and the good news is that it will be easier than most of the network
programming you’ve done so far, thanks to the wonder of remote procedure calls.

499

■ ■ ■

C H A P T E R 2 7

Project 8: File Sharing
with XML-RPC

In this chapter, you write a simple file sharing application. You may be familiar with the concept
of file sharing from such applications as Napster (no longer downloadable in its original form),
Gnutella (available from http://www.gnutella.com), BitTorrent (available from http://
www.bittorrent.com), and many others—what you’ll be writing is in many ways similar to
these, although quite a bit simpler.

The main technology you’ll use is XML-RPC. As discussed in Chapter 15, this is a protocol
for calling procedures (functions) remotely, possibly across a network.

If you want, you can quite easily use plain socket programming (possibly using some of the
techniques described in Chapter 14 and Chapter 24) to implement the functionality of this
project. That might even give you better performance because the XML-RPC protocol does
come with a certain overhead. However, XML-RPC is very easy to use, and will most likely
simplify your code considerably.

What’s the Problem?
What you want to create is a peer-to-peer file sharing program. File sharing basically means
exchanging files (everything from text files to sound clips) between programs running on
different machines. Peer-to-peer is a buzzword that describes a type of interaction between
computer programs, as opposed to the common client–server interaction, where a client may
connect to a server but not vice versa. In a peer-to-peer interaction, any peer may connect to
any other. In such a (virtual) network of peers, there is no central authority (as represented by
the server in a client–server architecture), which makes the network more robust. It won’t
collapse unless you shut down most of the peers.

■Tip If you’re interested in learning more about peer-to-peer systems, you should do a Web search on the
phrase “peer-to-peer,” which ought to give you several interesting hits.

500 C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X ML - R P C

Many issues are involved in constructing a peer-to-peer system—this project takes a very
simple approach to things. In a system such as Gnutella, a peer may disseminate a query to all
of its neighbors (the other peers it knows about), and they may subsequently disseminate the
query further. Any peer that responds to the query can then send a reply through the chain of
peers back to the initial one. The peers work individually and in parallel. (More recent systems,
such as BitTorrent, use even more clever techniques, for example, requiring that you upload
files in order to be allowed to download files.) To simplify things, your system will contact each
neighbor in turn, waiting for its response before moving on. Not quite as efficient, but good
enough for your purposes.

Also, most peer-to-peer systems have clever ways of organizing their structure—that is,
which peers are “next to” which—and how this structure evolves over time, as peers connect
and disconnect. You’ll keep that very simple in this project, but leave things open for
improvements.

Specific Goals
Here are some requirements that your program must satisfy:

• Each node must keep track of a set of known nodes, from which it can ask for help. It
must be possible for a node to introduce itself to another node (and thereby be included
in this set).

• It must be possible to ask a node for a file (by supplying a file name). If the node has the
file in question, it should return it; otherwise it should ask each of its neighbors in turn
for the same file (and they, in turn, may ask their neighbors). If any of these have the file,
it is returned.

• To avoid loops (A asking B, which in turn asks A) and to avoid overly long chains of
neighbors asking neighbors (A asking B asking. . . asking Z), it must be possible to supply
a history when querying a node. This history is just a list of which nodes have participated
in the query up until this point. By not asking nodes already in the history, you avoid
loops, and by limiting the length of the history, you avoid overly long query chains.

• There must be some way of connecting to a node and identifying yourself as a trusted
party. By doing so, you should be given access to functionality that is not available to
untrusted parties (such as other nodes in the peer-to-peer network). This functionality
may include asking the node to download and store a file from the other peers in the
network (through a query).

• You must have some user interface that lets you connect to a node (as a trusted party)
and make it download files. It should be easy to extend and, for that matter, replace this
interface.

All of this may seem a bit steep, but as you’ll see, implementing isn’t all that hard. And
you’ll probably find that once you’ve got this in place, adding functionality of your own won’t
be all that difficult either.

C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X M L - R P C 501

Useful Tools
In this project, you’ll use quite a few standard library modules. I won’t describe them all in
detail; refer to Chapter 10 and the Python Library Reference for additional details.

The main modules you’ll be using are xmlrpclib and its close friend SimpleXMLRPCServer.
The xmlrpclib module is discussed in Chapter 15, and SimpleXMLRPCServer is explored in more
detail in this chapter.

■Caution Make sure you have an updated version of xmlrpclib and SimpleXMLRPCServer to avoid
some security problems present in older versions. See the caution in the “XML-RPC” section of Chapter 15.

For the interface to the file sharing program, you’ll be using a module from the standard
library, called cmd (already mentioned in Chapter 24); to get some (very limited) parallelism,
you’ll use the threading module, and to extract the components of a URL, you’ll use the
urlparse module. All of these modules are explained later in the chapter.

Other modules you might want to brush up on are random, string, time, and os.path.

Preparations
First of all, you must make sure you have the proper libraries (that you can import xmlrpclib
and SimpleXMLRPCServer). Make sure you’ve got an updated version of SimpleXMLRPCServer.

You don’t strictly have to be connected to a network to use the software in this project, but
it will make things more interesting. If you have access to two (or more) separate machines that
are connected, you can run the software on each of these machines and have them communi-
cate with each other. For testing purposes, it is also possible to run multiple file sharing nodes
on the same machine.

First Implementation
Before you can write a first prototype of the Node class (a single node or peer in the system), you
have to learn a bit about how the SimpleXMLRPCServer class works. It is instantiated with a tuple
of the form (servername, port). The server name is the name of the machine on which the
server will run (you can use an empty string here to indicate localhost, the machine where
you’re actually executing the program). The port number can be any port you have access to,
typically 1024 and above.

After you have instantiated the server, you may register an instance that implements its
“remote methods,” with the register_instance method. Alternatively, you can register indi-
vidual functions with the register_function method. When you’re ready to run the server (so
that it can respond to requests from outside), you call its method serve_forever. You can easily
try this out. Start two interactive Python interpreters. In the first one, enter the code that appears
after the caution.

502 C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X ML - R P C

■Caution You may not be able to stop the server easily when you run it in an interpreter like this. You
should be prepared to terminate the interpreter itself. An alternative is to enter the following code in a script
and run that from the command line. Then you should be able to terminate the server with Ctrl+C (UNIX) or
Ctrl+Break (Windows).

>>> from SimpleXMLRPCServer import SimpleXMLRPCServer
>>> s = SimpleXMLRPCServer(("", 4242)) # Localhost at port 4242
>>> def twice(x): # Example function
... return x*2
...
>>> s.register_function(twice) # Add functionality to the server
>>> s.serve_forever() # Start the server

After executing the last statement, the interpreter should seem to “hang.” Actually, it’s
waiting for RPC requests.

To make such a request, switch to the other interpreter and execute the following:

>>> from xmlrpclib import ServerProxy # ...or simply Server, if you prefer
>>> s = ServerProxy('http://localhost:4242') # Localhost again...
>>> s.twice(2)
4

Pretty impressive, eh? Especially considering that the client part (using xmlrpclib) could
be run on a different machine. (In that case, you would have to use the actual name of the
server machine instead of simply localhost.)

Now that we’ve got the XML-RPC technicalities covered, it’s time to get started with the
coding. (The full source code of the first prototype is found in Listing 27-1, at the end of this
section.)

To find out where to begin, it might be a good idea to review your requirements from
earlier in this chapter. You’re mainly interested in two things: what information must your Node
hold (attributes) and what actions must it be able to perform (methods)?

The Node must have at least the following attributes:

• A directory name, so it knows where to find/store its files.

• A “secret” (or password) that can be used by others to identify themselves (as trusted
parties).

• A set of known peers (URLs).

• A URL, which may be added to the query history, or possibly supplied to other Nodes.
(This project won’t implement the latter.)

The Node constructor will simply set these four attributes. In addition, you’ll need a method
for querying the Node, a method for making it fetch and store a file, and a method to introduce

C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X M L - R P C 503

another Node to it. Let’s call these methods query, fetch, and hello. The following is a sketch of
the class, written as pseudocode:

class Node:

 def __init__(self, url, dirname, secret):
 self.url = url
 self.dirname = dirname
 self.secret = secret
 self.known = set()

 def query(self, query):
 Look for a file (possibly asking neighbors), and return it as
 a string

 def fetch(self, query, secret):
 If the secret is correct, perform a regular query and store
 the file. In other words, make the Node find the file and download it.

 def hello(self, other):
 Add the other Node to the known peers

Assuming that the set of known URLs is called known, the hello method is very simple—it
simply adds other to self.known, where other is the only parameter (a URL). However, XML-RPC
requires all methods to return a value; None is not accepted. So, let’s define two result “codes”
that indicate success or failure:

OK = 1
FAIL = 2

Then the hello method can be implemented as follows:

 def hello(self, other):
 self.known.add(other)
 return OK

When the Node is registered with a SimpleXMLRPCServer, it will be possible to call this method
from the “outside.”

The query and fetch methods are a bit more tricky. Let’s begin with fetch because it’s the
simpler of the two. It must take two parameters—the query and the “secret,” which is required
so that your Node can’t be arbitrarily manipulated by anyone. (Note that calling fetch causes
the Node to download a file. Access to this method should therefore be more restricted than, for
example, query, which simply passes the file through.)

If the supplied secret is not equal to self.secret (the one supplied at startup), fetch simply
returns FAIL. Otherwise, it calls query to get the file corresponding to the given query (a file
name). But what does query return? When you call query, you would like to know whether or

504 C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X ML - R P C

not the query succeeded, and you would like to have the contents of the relevant file returned
if it did. So, let’s define the return value of query as the pair (tuple) code, data where code is
either OK or FAIL, and data is the sought-after file (if code equals OK) stored in a string, or an arbitrary
value (for example, an empty string) otherwise.

In fetch, the code and the data are retrieved. If the code is FAIL, then fetch simply returns
FAIL as well. Otherwise, it opens a new file (in write mode) whose name is the same as the
query, and which is found in self.dirname (you use os.path.join to join the two). The data is
written to the file, the file is closed, and OK is returned. See Listing 27-1 later in this section for
the relatively straightforward implementation.

Now, turn your attention to query. It receives a query as a parameter, but it should also
accept a history (which contains URLs that should not be queried because they are already
waiting for a response to the same query). Because this history is empty in the first call to query,
you can use an empty list as a default value.

If you take a look at the code in Listing 27-1, you’ll see that I’ve abstracted away part of the
behavior of query by creating two utility methods called _handle and _broadcast. Note that
their names begin with underscores—that means that they won’t be accessible through XML-
RPC. (This is part of the behavior of SimpleXMLRPCServer, not a part of XML-RPC itself.) That is
useful because these methods aren’t meant to provide separate functionality to an outside
party, but are there to structure the code.

For now, let’s just assume that _handle takes care of the internal handling of a query
(checks whether the file exists at this specific Node, fetches the data, and so forth) and that it
returns a code and some data, just like query itself is supposed to. As you can see from the
listing, if code == OK, then code, data is returned straight away—the file was found. However,
what should query do if the code returned from _handle is FAIL? Then it has to ask all other
known Nodes for help. The first step in this process is to add self.url to history.

■Note Neither the += operator nor the append list method has been used when updating the history
because both of these modify lists in place, and you don’t want to modify the default value itself.

If the new history is too long, query returns FAIL (along with an empty string). The max
length is arbitrarily set to 6 and kept in the global “constant” MAX_HISTORY_LENGTH.

WHY IS MAX_HISTORY_LENGTH SET TO 6?

The idea is that any peer in the network should be able to reach another in, at most, six steps. This, of course,
depends on the structure of the network (which peers know which), but is supported by the hypothesis of “six
degrees of separation,” which applies to people and who they know. For a description of this hypothesis, see
the Small World Research Project (http://smallworld.columbia.edu).

Using this number in your program may not be very scientific, but at least it seems like a good guess. On
the other hand, in a large network with many nodes, the sequential nature of your program may lead to bad
performance for large values of MAX_HISTORY_LENGTH, so you might want to reduce it if things get slow.

C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X M L - R P C 505

If history isn’t too long, the next step is to broadcast the query to all known peers—which
is done with the _broadcast method. The _broadcast method isn’t very complicated (see the
listing for full source code). It iterates over a copy of self.known. If a peer is found in history,
the loop continues to the next peer (using the continue statement). Otherwise, a ServerProxy is
constructed, and the query method is called on it. If the query succeeds, its return value is used
as the return value from _broadcast. Exceptions may occur, due to network problems, a faulty
URL, or the fact that the peer doesn’t support the query method. If such an exception occurs,
the peer’s URL is removed from self.known (in the except clause of the try statement enclosing
the query). Finally, if control reaches the end of the function (nothing has been returned yet),
FAIL is returned, along with an empty string.

■Note You shouldn’t simply iterate over self.known because the set may be modified during the iteration.
Using a copy is safer.

The _start method creates a SimpleXMLRPCServer (using the little utility function getPort,
which extracts the port number from a URL), with logRequests set to false (you don’t want to
keep a log). It then registers self with register_instance and calls the server’s serve_forever
method.

Finally, the main method of the module extracts a URL, a directory, and a secret (password)
from the command line, creates a Node, and calls its _start method.

For the full code of the prototype, see Listing 27-1.

Listing 27-1. A Simple Node Implementation (simple_node.py)

from xmlrpclib import ServerProxy
from os.path import join, isfile
from SimpleXMLRPCServer import SimpleXMLRPCServer
from urlparse import urlparse
import sys

MAX_HISTORY_LENGTH = 6

OK = 1
FAIL = 2
EMPTY = ''

def getPort(url):
 'Extracts the port from a URL'
 name = urlparse(url)[1]
 parts = name.split(':')
 return int(parts[-1])

506 C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X ML - R P C

class Node:
 """
 A node in a peer-to-peer network.
 """
 def __init__(self, url, dirname, secret):
 self.url = url
 self.dirname = dirname
 self.secret = secret
 self.known = set()

 def query(self, query, history=[]):
 """
 Performs a query for a file, possibly asking other known Nodes for
 help. Returns the file as a string.
 """
 code, data = self._handle(query)
 if code == OK:
 return code, data
 else:
 history = history + [self.url]
 if len(history) >= MAX_HISTORY_LENGTH:
 return FAIL, EMPTY
 return self._broadcast(query, history)

 def hello(self, other):
 """
 Used to introduce the Node to other Nodes.
 """
 self.known.add(other)
 return OK

 def fetch(self, query, secret):
 """
 Used to make the Node find a file and download it.
 """
 if secret != self.secret: return FAIL
 code, data = self.query(query)
 if code == OK:
 f = open(join(self.dirname, query), 'w')
 f.write(data)
 f.close()
 return OK
 else:
 return FAIL

C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X M L - R P C 507

 def _start(self):
 """
 Used internally to start the XML-RPC server.
 """
 s = SimpleXMLRPCServer(("", getPort(self.url)), logRequests=False)
 s.register_instance(self)
 s.serve_forever()

 def _handle(self, query):
 """
 Used internally to handle queries.
 """
 dir = self.dirname
 name = join(dir, query)
 if not isfile(name): return FAIL, EMPTY
 return OK, open(name).read()

 def _broadcast(self, query, history):
 """
 Used internally to broadcast a query to all known Nodes.
 """
 for other in self.known.copy():
 if other in history: continue
 try:
 s = ServerProxy(other)
 code, data = s.query(query, history)
 if code == OK:
 return code, data
 except:
 self.known.remove(other)
 return FAIL, EMPTY

def main():
 url, directory, secret = sys.argv[1:]
 n = Node(url, directory, secret)
 n._start()

if __name__ == '__main__': main()

Let’s take a look at a simple example of how this program may be used. Make sure you
have several terminals (xterms, DOS windows, or equivalent) open. Let’s say you want to run
two peers (both on the same machine): create a directory for each of them, for example, files1
and files2. Put some file (for example, test.txt) into files2. Then, in one terminal, run the
following command:

python simple_node.py http://localhost:4242 files1 secret1

508 C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X ML - R P C

In a real application, you would use the full machine name instead of localhost, and you
would probably use something a bit more cryptic instead of secret1.

This is your first peer. Now create another one. In a different terminal, run the following
command:

python simple_node.py http://localhost:4243 files2 secret2

As you can see, this peer serves files from a different directory, uses another port number
(4243), and has another secret. If you have followed these instructions, you should have two
peers running (each in a separate terminal window). Let’s start up an interactive Python inter-
preter and try to connect to one of them:

>>> from xmlrpclib import *
>>> mypeer = ServerProxy('http://localhost:4242') # The first peer
>>> code, data = mypeer.query('test.txt')
>>> code
2

As you can see, the first peer fails when asked for the file test.txt. (2 is the code for failure,
remember?) Let’s try the same thing with the second peer:

>>> otherpeer = ServerProxy('http://localhost:4243') # The second peer
>>> code, data = otherpeer.query('test.txt')
>>> code
1

This time the query succeeds because the file test.txt is found in the second peer’s file
directory. If your test file doesn’t contain too much text, you can display the contents of the
data variable to make sure that the contents of the file have been transferred properly:

>>> data
'This is a test\n'

So far so good. How about introducing the first peer to the second one?

>>> mypeer.hello('http://localhost:4243') # Introducing mypeer to otherpeer

Now the first peer knows the URL of the second, and thus may ask it for help. Let’s try
querying the first peer again—this time the query should succeed:

>>> mypeer.query('test.txt')
[1, 'This is a test\n']

Bingo!
Now there is only one thing left to test: can you make the first node actually download and

store the file from the second one?

>>> mypeer.fetch('test.txt', 'secret1')
1

Well, the return value indicates success. And if you look in the files1 directory, you should
see that the file test.txt has miraculously appeared. Cool, eh? Feel free to start several peers

C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X M L - R P C 509

(on different machines, if you want to), and introduce them to each other. When you grow tired
of playing, proceed to the next implementation.

Second Implementation
The first implementation has plenty of flaws and shortcomings. I won’t address all of them
(some possible improvements are discussed in the section “Further Exploration,” at the end of
this chapter), but here are some of the more important ones:

• If you try to stop a Node and then restart it, you will probably get some error message
about the port being in use already.

• You should have a more user-friendly interface than xmlrpclib in an interactive Python
interpreter.

• The return codes are inconvenient—a more natural and Pythonic solution would be to
use a custom exception if the file can’t be found.

• The Node doesn’t check whether the file it returns is actually inside the file directory. By
using paths such as '../somesecretfile.txt', a sneaky cracker may get unlawful access
to any of your other files.

The first problem is easy to solve. You simply set the allow_reuse_address attribute of the
SimpleXMLRPCServer to true:

SimpleXMLRPCServer.allow_reuse_address = 1

If you don’t want to modify this class directly, you can create your own subclass. The other
changes are a bit more involved, and are discussed in the following sections. The source code
is shown in Listings 27-2 and 27-3 later in this chapter. (You might want to take a quick look at
these listings before reading on.)

The Client Interface
The client interface uses the Cmd class from the cmd module. For details about how this works,
see the Python Library Reference. Simply put, you subclass Cmd to create a command-line inter-
face, and implement a method called do_foo for each command foo you want it to be able to
handle. This method will receive the rest of the command line as its only argument (as a string).
For example, if you type

say hello

in the command-line interface, the method do_say is called with the string 'hello' as its only
argument. The prompt of the Cmd subclass is determined by the prompt attribute.

The only commands implemented in your interface will be fetch (to download a file) and
exit (to exit the program). The fetch command simply calls the fetch method of the server (I’ll
get to that in a minute), printing an error message if the file could not be found. (The UNHANDLED
stuff will be explained in the next section, “The Exceptions.”) The exit commands prints an
empty line (for aesthetic reasons only) and calls sys.exit. (The EOF command corresponds to
“end of file,” which occurs when the user presses Ctrl+D in UNIX.)

510 C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X ML - R P C

But what is all the stuff going on in the constructor? Well—you want each client to be asso-
ciated with a peer of its own. You could simply create a Node object and call its _start method,
but then your Client couldn’t do anything until the _start method returned—which makes
the Client completely useless. To fix this, the Node is started in a separate thread. Normally,
using threads involves a lot of safeguarding and synchronization with locks and the like, all of
which is beyond the scope of this book. However, because a Client only interacts with its Node
through XML-RPC, you don’t need any of this. (You should be careful if you rewrite this code,
however. The minute your Client starts interacting directly with the Node object or vice versa,
you may easily run into trouble. Make sure you fully understand threading before you do this.)
To run the _start method in a separate thread, you only have to put the following code into
your program at some suitable place:

from threading import Thread
n = Node(url, dirname, self.secret)
t = Thread(target=n._start)
t.start()

To make sure that the server is fully started before you start connecting to it with XML-RPC,
you’ll give it a head start, and wait for a moment with time.sleep.

Afterward, you’ll go through all the lines in a file of URLs and introduce your server to them
with the hello method.

You don’t really want to be bothered with coming up with a clever secret password. Instead,
you can use the utility function randomString in Listing 27-3, shown later in this chapter, which
generates a random secret string that is shared between the Client and the Node.

The Exceptions
Instead of returning a code indicating success or failure, you’ll just assume success and raise an
exception in the case of failure. In XML-RPC, exceptions (or “faults”) are identified by numbers.
In Listing 27-2 later in this chapter, you can see that I have (arbitrarily) chosen the numbers 100
and 200 for ordinary failure (an unhandled request) and a request refusal (access denied),
respectively. The exceptions are subclasses of xmlrpclib.Fault—when they are raised in the
server, they are passed on to the client with the same faultCode. If an ordinary exception
(such as IOException) is raised in the server, an instance of the Fault class is still created,
so you can’t simply use arbitrary exceptions here. (Make sure you have a recent version of
SimpleXMLRPCServer, so it handles exceptions properly.)

As you can see from the source code, the logic is still basically the same, but instead of
using if statements for checking returned codes, the program now uses exceptions. (Because
you can only use Fault objects, you need to check the faultCodes. If you weren’t using XML-RPC,
you would have used different exception classes instead, of course.)

Validating File Names
The last issue to deal with is to check whether a given file name is found within a given directory.
There are several ways to do this, but to keep things platform-independent (so it works in
Windows, in UNIX, and in Mac OS, for example), you should use the module os.path.

The simple approach taken here is to create an absolute path from the directory name and
the file name (so that, for example, '/foo/bar/../baz' is converted to '/foo/baz'), the directory

C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X M L - R P C 511

name is joined with an empty file name (using os.path.join) to ensure that it ends with
a file separator (such as '/'), and then you check that the absolute file name begins with the
absolute directory name. If it does, the file is actually inside the directory.

Trying Out the Second Implementation
The full source code for the second implementation is found in Listings 27-2 and 27-3. Let’s see
how the program is used. It is started like this:

python client.py urls.txt directory http://servername.com:4242

The file urls.txt should contain one URL per line—the URLs of all the other peers you
know of. The directory given as the second argument should contain the files you want to share
(and will be the location where new files are downloaded). The last argument is the URL to the
peer. When you run this command, you should get a prompt like this:

>

Try fetching a nonexistent file:

> fetch fooo
Couldn't find the file fooo

By starting several nodes (either on the same machine, using different ports, or on different
machines) that know about each other (just put all the URLs in the URL files) you can try these
out as you did with the first prototype. When you get bored with this, move on to the next
section, “Further Exploration.”

Listing 27-2. A New Node Implementation (server.py)

from xmlrpclib import ServerProxy, Fault
from os.path import join, abspath, isfile
from SimpleXMLRPCServer import SimpleXMLRPCServer
from urlparse import urlparse
import sys

SimpleXMLRPCServer.allow_reuse_address = 1

MAX_HISTORY_LENGTH = 6

UNHANDLED = 100
ACCESS_DENIED = 200

class UnhandledQuery(Fault):
 """
 An exception that represents an unhandled query.
 """
 def __init__(self, message="Couldn't handle the query"):
 Fault.__init__(self, UNHANDLED, message)

512 C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X ML - R P C

class AccessDenied(Fault):
 """
 An exception that is raised if a user tries to access a
 resource for which he or she is not authorized.
 """
 def __init__(self, message="Access denied"):
 Fault.__init__(self, ACCESS_DENIED, message)

def inside(dir, name):
 """
 Checks whether a given file name lies within a given directory.
 """
 dir = abspath(dir)
 name = abspath(name)
 return name.startswith(join(dir, ''))

def getPort(url):
 """
 Extracts the port number from a URL.
 """
 name = urlparse(url)[1]
 parts = name.split(':')
 return int(parts[-1])

class Node:
 """
 A node in a peer-to-peer network.
 """
 def __init__(self, url, dirname, secret):
 self.url = url
 self.dirname = dirname
 self.secret = secret
 self.known = set()

 def query(self, query, history=[]):
 """
 Performs a query for a file, possibly asking other known Nodes for
 help. Returns the file as a string.
 """
 try:
 return self._handle(query)
 except UnhandledQuery:
 history = history + [self.url]
 if len(history) >= MAX_HISTORY_LENGTH: raise
 return self._broadcast(query, history)

C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X M L - R P C 513

 def hello(self, other):
 """
 Used to introduce the Node to other Nodes.
 """
 self.known.add(other)
 return 0

 def fetch(self, query, secret):
 """
 Used to make the Node find a file and download it.
 """
 if secret != self.secret: raise AccessDenied
 result = self.query(query)
 f = open(join(self.dirname, query), 'w')
 f.write(result)
 f.close()
 return 0

 def _start(self):
 """
 Used internally to start the XML-RPC server.
 """
 s = SimpleXMLRPCServer(("", getPort(self.url)), logRequests=False)
 s.register_instance(self)
 s.serve_forever()

 def _handle(self, query):
 """
 Used internally to handle queries.
 """
 dir = self.dirname
 name = join(dir, query)
 if not isfile(name): raise UnhandledQuery
 if not inside(dir, name): raise AccessDenied
 return open(name).read()

 def _broadcast(self, query, history):
 """
 Used internally to broadcast a query to all known Nodes.
 """
 for other in self.known.copy():
 if other in history: continue
 try:
 s = ServerProxy(other)
 return s.query(query, history)

514 C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X ML - R P C

 except Fault, f:
 if f.faultCode == UNHANDLED: pass
 else: self.known.remove(other)
 except:
 self.known.remove(other)
 raise UnhandledQuery

def main():
 url, directory, secret = sys.argv[1:]
 n = Node(url, directory, secret)
 n._start()

if __name__ == '__main__': main()

Listing 27-3. A Node Controller Interface (client.py)

from xmlrpclib import ServerProxy, Fault
from cmd import Cmd
from random import choice
from string import lowercase
from server import Node, UNHANDLED
from threading import Thread
from time import sleep
import sys

HEAD_START = 0.1 # Seconds
SECRET_LENGTH = 100

def randomString(length):
 """
 Returns a random string of letters with the given length.
 """
 chars = []
 letters = lowercase[:26]
 while length > 0:
 length -= 1
 chars.append(choice(letters))
 return ''.join(chars)

class Client(Cmd):
 """
 A simple text-based interface to the Node class.
 """

 prompt = '> '

C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X M L - R P C 515

 def __init__(self, url, dirname, urlfile):
 """
 Sets the url, dirname, and urlfile, and starts the Node
 Server in a separate thread.
 """
 Cmd.__init__(self)
 self.secret = randomString(SECRET_LENGTH)
 n = Node(url, dirname, self.secret)
 t = Thread(target=n._start)
 t.setDaemon(1)
 t.start()
 # Give the server a head start:
 sleep(HEAD_START)
 self.server = ServerProxy(url)
 for line in open(urlfile):
 line = line.strip()
 self.server.hello(line)

 def do_fetch(self, arg):
 "Call the fetch method of the Server."
 try:
 self.server.fetch(arg, self.secret)
 except Fault, f:
 if f.faultCode != UNHANDLED: raise
 print "Couldn't find the file", arg

 def do_exit(self, arg):
 "Exit the program."
 print
 sys.exit()

 do_EOF = do_exit # End-Of-File is synonymous with 'exit'

def main():
 urlfile, directory, url = sys.argv[1:]
 client = Client(url, directory, urlfile)
 client.cmdloop()

if __name__ == '__main__': main()

516 C H A P T E R 2 7 ■ P R O J E C T 8 : F I L E S H A R I N G W I T H X ML - R P C

Further Exploration
You can probably think of several ways to improve and extend the system described in this
chapter, but here are some ideas:

• Add caching: If you node relays a file through a call to query, why not store the file at
the same time? That way you can respond more quickly the next time someone asks for the
same file. You could perhaps set a maximum size for the cache, remove old files, and so on.

• Use a threaded or asynchronous server (a bit difficult). That way you can ask several
other nodes for help without waiting for their replies, and they can later give you the
reply by calling a reply method.

• Allow more advanced queries, such as querying on the contents of text files.

• Use the hello method more extensively. When you discover a new peer (through a call
to hello), why not introduce it to all the peers you know? Perhaps you can think of more
clever ways of discovering new peers?

• Read up on the REST philosophy of distributed systems—an emerging alternative to Web
service technologies such as XML-RPC. (See, for example, http://en.wikipedia.org/
wiki/REST.)

• Use xmlrpclib.Binary to wrap the files, to make the transfer safer for nontext files.

• Read the SimpleXMLRPCServer code. Check out the DocXMLRPCServer class and the multi-
call extension in libxmlrpc.

What Now?
Now that you have a peer-to-peer file sharing system working, how about making it more
user-friendly? In the next chapter, you learn how to add a GUI as an alternative to the current
cmd-based interface.

517

■ ■ ■

C H A P T E R 2 8

Project 9: File Sharing II—
Now with GUI!

This is a relatively short project because much of the functionality you need has already been
written—in Chapter 27. In this chapter, you see how easy it can be to add a graphical user inter-
face (GUI) to an existing Python program.

What’s the Problem?
In this project, you expand the file sharing system developed in Project 8, presented in Chapter 27,
with a GUI client. This will make the program much easier to use, which means that more
people might choose to use it—and if there is to be any point in a file sharing program, there
should be more than one user. A secondary goal of this project is to show that a program that
has a sufficiently modular design can be quite easy to extend (one of the arguments for using
object-oriented programming).

Specific Goals
The GUI client should satisfy the following requirements:

• It should allow you to enter a file name and submit it to the server’s fetch method.

• It should list the files currently available in the server’s file directory.

That’s it. Because you already have much of the system working, the GUI part is a relatively
simple extension.

Useful Tools
In addition to the tools used in Chapter 27, you will need the wxPython toolkit. For more infor-
mation about (and installation instructions for) wxPython, see Chapter 12. The code in this
chapter was developed using wxPython version 2.6.

If you want to use another GUI toolkit, feel free to do so. The implementation in this chapter
will give you the general idea of how you can build your own, with your favorite tools. (Chapter 12
describes several GUI toolkits.)

518 C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I !

Preparations
Before you begin this project, you should have Project 8 (from Chapter 27) in place, and a usable
GUI toolkit installed, as mentioned in the previous section. Beyond that, no significant prepa-
rations are necessary for this project.

First Implementation
If you want to take a peek at the full source code for the first implementation, it can be found in
Listing 28-1 later in this section. Much of the functionality is quite similar to that of the project
in the preceding chapter. The client presents an interface (the fetch method) through which
the user may access the functionality of the server. Let’s review the GUI-specific parts of the code.

The client in Chapter 27 was a subclass of cmd.Cmd; the Client described in this chapter
subclasses wx.App. While you’re not required to subclass wx.App (you could create a completely
separate Client class), it can be a natural way of organizing your code. The GUI-related setup
is placed in a separate method, called OnInit, which is called automatically after the App object
has been created. It performs the following steps:

1. It creates a window with the title “File Sharing Client.”

2. It creates a text field and assigns it to the attribute self.input (and, for convenience, to
the local variable input). It also creates a button with the text “Fetch.” It sets the size of
the button and binds an event handler to it. Both the text field and the button have the
panel bkg as their parent.

3. It adds the text field and button to the window, laying them out using box sizers. Feel
free to use another layout mechanism if you want to.

4. It shows the window, and returns True, to indicate that OnInit was successful.

The event handler is quite similar to the handler do_fetch from Chapter 27. It retrieves
the query from self.input (the text field). It then calls self.server.fetch inside a try/except
statement. Note that the event handler receives an event object as its only argument.

Except for the relatively simple code explained previously, the GUI client works just like
the text-based client in Chapter 27. You can run it in the same manner, too. This implementa-
tion only performs part of the job it’s supposed to, though. It should also list the files available
in the server’s file directory. To do that, the server (Node) itself must be extended.

The source code for the first implementation is shown in Listing 28-1.

C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I ! 519

Listing 28-1. A Simple GUI Client (simple_guiclient.py)

from xmlrpclib import ServerProxy, Fault
from server import Node, UNHANDLED
from client import randomString
from threading import Thread
from time import sleep
from os import listdir
import sys
import wx

HEAD_START = 0.1 # Seconds
SECRET_LENGTH = 100

class Client(wx.App):
 """
 The main client class, which takes care of setting up the GUI and
 starts a Node for serving files.
 """
 def __init__(self, url, dirname, urlfile):
 """
 Creates a random secret, instantiates a Node with that secret,
 starts a Thread with the Node's _start method (making sure the
 Thread is a daemon so it will quit when the application quits),
 reads all the URLs from the URL file and introduces the Node to
 them.
 """
 super(Client, self).__init__()
 self.secret = randomString(SECRET_LENGTH)
 n = Node(url, dirname, self.secret)
 t = Thread(target=n._start)
 t.setDaemon(1)
 t.start()
 # Give the server a head start:
 sleep(HEAD_START)
 self.server = ServerProxy(url)
 for line in open(urlfile):
 line = line.strip()
 self.server.hello(line)

520 C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I !

 def OnInit(self):
 """
 Sets up the GUI. Creates a window, a text field, and a button, and
 lays them out. Binds the submit button to self.fetchHandler.
 """

 win = wx.Frame(None, title="File Sharing Client", size=(400, 45))

 bkg = wx.Panel(win)

 self.input = input = wx.TextCtrl(bkg);

 submit = wx.Button(bkg, label="Fetch", size=(80, 25))
 submit.Bind(wx.EVT_BUTTON, self.fetchHandler)

 hbox = wx.BoxSizer()

 hbox.Add(input, proportion=1, flag=wx.ALL | wx.EXPAND, border=10)
 hbox.Add(submit, flag=wx.TOP | wx.BOTTOM | wx.RIGHT, border=10)

 vbox = wx.BoxSizer(wx.VERTICAL)
 vbox.Add(hbox, proportion=0, flag=wx.EXPAND)

 bkg.SetSizer(vbox)

 win.Show()

 return True

 def fetchHandler(self, event):
 """
 Called when the user clicks the 'Fetch' button. Reads the
 query from the text field, and calls the fetch method of the
 server Node. If the query is not handled, an error message is
 printed.
 """

 query = self.input.GetValue()
 try:
 self.server.fetch(query, self.secret)
 except Fault, f:
 if f.faultCode != UNHANDLED: raise
 print "Couldn't find the file", query

C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I ! 521

def main():
 urlfile, directory, url = sys.argv[1:]
 client = Client(url, directory, urlfile)
 client.MainLoop()

if __name__ == "__main__": main()

To run this program, you need a URL file, a directory of files to share, and a URL for your
Node. Here is a sample run:

$ python simple_guiclient.py urlfile.txt files/ http://localhost:8080

Note that the file urlfile.txt must contain the URLs of some other Nodes for the program
to be of any use. You can either start several programs on the same machine (with different
port numbers) for testing purposes, or run them on different machines.

See Figure 28-1 for a screenshot of the client.

Figure 28-1. The simple GUI client

Second Implementation
The first prototype was very simple. It did its job as a file sharing system, but wasn’t very user-
friendly. It would help a lot if the user could see which files he or she had available (either located in
the file directory when the program starts, or subsequently downloaded from another Node).
The second implementation will address this file listing issue. The full source code can be
found in Listing 28-2 later in this section.

To get a listing from a Node, you must add a method. You could protect it with a password
like you have done with fetch, but making it publicly available may be useful, and it doesn’t
represent any real security risk. Extending an object is really easy: you can do it through
subclassing. You simply construct a subclass of Node called ListableNode, with a single additional
method, list, which uses the method os.listdir, which returns a list of all the files in a directory:

class ListableNode(Node):

 def list(self):
 return listdir(self.dirname)

To access this server method, the method updateList is added to the client:

 def updateList(self):
 self.files.Set(self.server.list())

522 C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I !

The attribute self.files refers to a list box, which has been added in the OnInit method.
The updateList method is called in OnInit at the point where the list box is created, and again
each time fetchHandler is called (because calling fetchHandler may potentially alter the list
of files).

And that’s it. You now have a GUI-enabled peer-to-peer file sharing program, which can
be run with the command

$ python guiclient.py urlfile.txt files/ http://localhost:8080

To see what it looks like, see Figure 28-2. The full source code is found in Listing 28-2.

Figure 28-2. The finished GUI client

Of course, there are plenty of ways to expand the program. For some ideas, see the next
section, “Further Exploration,” as well as the section with the same title in Chapter 27. Beyond
that, just let your imagination go wild.

Listing 28-2. The Finished GUI Client (guiclient.py)

from xmlrpclib import ServerProxy, Fault
from server import Node, UNHANDLED
from client import randomString
from threading import Thread
from time import sleep
from os import listdir
import sys
import wx

HEAD_START = 0.1 # Seconds
SECRET_LENGTH = 100

C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I ! 523

class ListableNode(Node):
 """
 An extended version of Node, which can list the files
 in its file directory.
 """
 def list(self):
 return listdir(self.dirname)

class Client(wx.App):
 """
 The main client class, which takes care of setting up the GUI and
 starts a Node for serving files.
 """
 def __init__(self, url, dirname, urlfile):
 """
 Creates a random secret, instantiates a ListableNode with that secret,
 starts a Thread with the ListableNode's _start method (making sure the
 Thread is a daemon so it will quit when the application quits),
 reads all the URLs from the URL file and introduces the Node to
 them. Finally, sets up the GUI.
 """
 # Give the server a head start:
 sleep(HEAD_START)
 self.server = ServerProxy(url)
 super(Client, self).__init__()
 self.secret = randomString(SECRET_LENGTH)
 n = ListableNode(url, dirname, self.secret)
 t = Thread(target=n._start)
 t.setDaemon(1)
 t.start()
 for line in open(urlfile):
 line = line.strip()
 self.server.hello(line)

 def updateList(self):
 """
 Updates the list box with the names of the files available
 from the server Node.
 """
 self.files.Set(self.server.list())

524 C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I !

 def OnInit(self):
 """
 Sets up the GUI. Creates a window, a text field, a button, and
 a list box, and lays them out. Binds the submit button to
 self.fetchHandler.
 """

 win = wx.Frame(None, title="File Sharing Client", size=(400, 300))

 bkg = wx.Panel(win)

 self.input = input = wx.TextCtrl(bkg);

 submit = wx.Button(bkg, label="Fetch", size=(80, 25))
 submit.Bind(wx.EVT_BUTTON, self.fetchHandler)

 hbox = wx.BoxSizer()

 hbox.Add(input, proportion=1, flag=wx.ALL | wx.EXPAND, border=10)
 hbox.Add(submit, flag=wx.TOP | wx.BOTTOM | wx.RIGHT, border=10)

 self.files = files = wx.ListBox(bkg)
 self.updateList()

 vbox = wx.BoxSizer(wx.VERTICAL)
 vbox.Add(hbox, proportion=0, flag=wx.EXPAND)
 vbox.Add(files, proportion=1,
 flag=wx.EXPAND | wx.LEFT | wx.RIGHT | wx.BOTTOM, border=10)

 bkg.SetSizer(vbox)

 win.Show()

 return True

 def fetchHandler(self, event):
 """
 Called when the user clicks the 'Fetch' button. Reads the
 query from the text field, and calls the fetch method of the
 server Node. After handling the query, updateList is called.
 If the query is not handled, an error message is printed.
 """
 query = self.input.GetValue()
 try:
 self.server.fetch(query, self.secret)
 self.updateList()

C H A P T E R 2 8 ■ P R O J E C T 9 : F I L E S H A R I N G I I — N O W W I T H G U I ! 525

 except Fault, f:
 if f.faultCode != UNHANDLED: raise
 print "Couldn't find the file", query

def main():
 urlfile, directory, url = sys.argv[1:]
 client = Client(url, directory, urlfile)
 client.MainLoop()

if __name__ == '__main__': main()

Further Exploration
Some ideas for extending the file sharing system are given in Chapter 27. Here are some more:

• Add a status bar that displays such messages as “Downloading” or “Couldn’t find file
foo.txt.”

• Figure out ways for Nodes to share their “friends.” For example, when one Node is intro-
duced to another, each of them could introduce the other to the Nodes it already knows.
Also, before a Node shuts down, it might tell all its current neighbors of all the Nodes it knows.

• Add a list of known Nodes (URLs) to the GUI. Make it possible to add new URLs and save
them in a URL file.

What Now?
Now you’ve written a full-fledged GUI-enabled peer-to-peer file sharing system. Although that
sounds pretty challenging, it wasn’t all that hard, was it? Now it’s time to face the last and
greatest challenge: writing your own arcade game.

527

■ ■ ■

C H A P T E R 2 9

Project 10: Do-It-Yourself
Arcade Game

Welcome to the final project. Now that you’ve sampled several of Python’s many capabili-
ties, it’s time to go out with a bang. In this chapter, you learn how to use Pygame, an extension
that enables you to write full-fledged, full-screen arcade games in Python. Although easy to
use, Pygame is quite powerful and consists of several components that are thoroughly docu-
mented in the Pygame documentation (available on the Pygame Web site, http://pygame.org).
This project introduces you to some of the main Pygame concepts, but because this chapter is
only meant as a starting point, I’ve skipped several interesting features such as sound and
video handling. I would recommend that you look into these yourself, once you’ve familiarized
yourself with the basics.

What’s the Problem?
So, how do you write a computer game? The basic design process is similar to the one you use
when writing any other program (as described in Chapter 7), but before you can develop an
object model, you need to design the game itself. What are its characters, its setting, its objectives?

I’ll keep things reasonably simple here, so as not to clutter the presentation of the basic
Pygame concepts. Feel free to create a much more elaborate game if you like. I’ll base my game
on the well-known Monty Python sketch “Self-Defense Against Fresh Fruit.” In this sketch, a
Sergeant Major (John Cleese) is instructing his soldiers in self-defense techniques against attackers
wielding fresh fruit such as pomegranates, mangoes in syrup, greengages, and bananas. The
defense techniques include using a gun, unleashing a tiger, and dropping a 16-ton weight on
top of the attacker. In this game, I turn things around—the player controls a banana that desper-
ately tries to survive a course in self-defense, avoiding a barrage of 16-ton weights dropping
from above. I guess a fitting name for the game might be Squish.

■Tip If you’d like to try your hand at a game of your own as you follow this chapter, feel free to do so. If you
just want to change the look and feel of the game, simply replace the graphics (a couple of GIF or PNG images)
and some of the descriptive text.

528 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

Specific Goals
The specific goals of this project revolve around the game design. The game should behave
as it was designed (the banana should be movable, and the 16-ton weight should drop from
above). In addition, the code should be modular and easily extensible (as always). A useful
requirement might be that game states (such as the game introduction, the various game
levels, the “game over” state) should be part of the design, and that new states should be easy
to add.

Useful Tools
The only new tool you need in this project is Pygame, which you can download from the Pygame
Web site (http://pygame.org). To get Pygame to work in UNIX, you may need to install some
extra software, but it’s all documented in the Pygame installation instructions (also available
from the Pygame Web site). The Windows binary installer is very easy to use—simply execute
the installer and follow the instructions.

■Note The Pygame distribution does not include Numerical Python, which may be useful for manipulating
sounds and images. Although it’s not needed for this project, you might want to check it out (http://
numeric.scipy.org). The Pygame documentation thoroughly describes how to use Numerical Python
with Pygame.

The Pygame distribution consists of several modules, most of which you won’t need in this
project. The following sections describe the modules you do need. (Only the specific functions
or classes you’ll need are discussed here.) In addition to the functions described in the following
sections, the various objects used (such as surfaces, groups, or sprites) have several useful
methods that I discuss as they are used in the implementation sections.

■Tip You can find a nice introduction to Pygame in the “Line-by-Line Chimp Tutorial” on the Pygame Web
site (http://pygame.org/docs/tut/chimp/ChimpLineByLine.html). It addresses a few issues not
discussed here, such as playing sound clips.

pygame
This module automatically imports all the other Pygame modules, so if you place import➥
pygame at the top of your program, you can automatically access the other modules, such as
pygame.display or pygame.font.

The pygame module contains (among other things) the Surface function, which returns a
new surface object. Surface objects are simply blank images of a given size that you can use for
drawing and blitting. To blit (calling a surface object’s blit method) simply means to transfer

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 529

the contents of one surface to another. (The word “blit” is derived from the technical term
“block transfer,” which is abbreviated BLT.)

The init function is central to any Pygame game. It must be called before your game
enters its main event loop. This function automatically initializes all the other modules (such
as font and image).

You need the error class when you want to catch Pygame-specific errors.

pygame.locals
This module contains names (variables) you might want in your own module’s scope. It contains
names for event types, keys, video modes, and more. It is designed to be safe to use when you
import everything (from pygame.locals import *), although if you know what you need, you
may want to be more specific (for example, from pygame.locals import FULLSCREEN).

pygame.display
This module contains functions for dealing with the Pygame display, which may either be
contained in a normal window or occupy the entire screen. In this project, you need the
following functions:

• flip: In general, when you modify the current screen, you do that in two steps. First,
you perform all the necessary modifications to the surface object returned from the
get_surface function, and then you call pygame.display.flip to update the display to
reflect your changes.

• update: Used instead of flip when you only want to update a part of the screen. It can be
used with the list of rectangles returned from the draw method of the RenderUpdates class
(described in the section “pygame.sprite” later in this chapter) as its only parameter.

• set_mode: Sets the display size and the type of display. There are several variations possible,
but here you’ll restrict yourself to the FULLSCREEN version, and the default “display in a
window” version.

• set_caption: Sets a caption for the Pygame program. The set_caption function is primarily
useful when you run your game in a window (as opposed to full-screen) because the
caption is used as the window title.

• get_surface: Returns a surface object you can draw your graphics on before calling
pygame.display.flip or pygame.display.blit. The only surface method used for drawing
in this project is blit, which transfers the graphics found in one surface object onto
another one, at a given location. (In addition, the draw method of a Group object will be
used to draw Sprite objects onto the display surface.)

pygame.font
This module contains the Font function. Font objects are used to represent different typefaces.
They can be used to render text as images that may then be used as normal graphics in Pygame.

530 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

pygame.sprite
This module contains two very important classes: Sprite and Group.

The Sprite class is the base class for all visible game objects—in the case of this project,
the banana and the 16-ton weight. To implement your own game objects, you subclass Sprite,
override its constructor to set its image and rect properties (which determine how the Sprite
looks, and where it is placed), and override its update method, which is called whenever the
sprite might need updating.

Instances of the Group class (and its subclasses) are used as containers for Sprites. In
general, using groups is a Good Thing. In simple games (such as in this project), simply create
a group called sprites or allsprites or something similar, and add all your Sprites to it. When
you call the Group object’s update method, the update methods of all your Sprite objects will
then be called automatically. Also, the Group object’s draw method can be used to draw all the
Sprite objects it contains.

In this project, I use the RenderUpdates subclass of Group, whose draw method returns a list
of rectangles that have been affected. These may then be passed to pygame.display.update to
update only the parts of the display that need to be updated. This can greatly improve the
performance of the game.

pygame.mouse
In Squish, I use this module for just two things: hiding the mouse cursor, and getting the mouse
position. You hide the mouse with pygame.mouse.set_visible(False), and you get the position
with pygame.mouse.get_pos().

pygame.event
This module keeps track of various events such as mouse clicks, mouse motion, keys that
are pressed or released, and so on. To get a list of the most recent events, use the function
pygame.event.get.

■Note If you rely only on state information such as the mouse position returned by pygame.mouse.
get_pos, you don’t have to use pygame.event.get. However, you need to keep the Pygame updated
(“in sync”), which you can do by calling the function pygame.event.pump regularly.

pygame.image
This module is used to deal with images such as those stored in GIF, PNG, or JPEG files (or
indeed several other formats). In this project, you only need the load function, which reads an
image file and creates a surface object containing the image.

Preparations
Now that you know a bit about what some of the different Pygame modules do, it’s almost time
to start hacking away at the first prototype game. There are, however, a couple of preparations

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 531

you need to make before you can get the prototype up and running. First of all, you should
make sure that you have Pygame installed, including the image and font modules. (You might
want to import both of these in an interactive Python interpreter to make sure they are available.)

You also need a couple of images. If you want to stick to the theme of the game as presented in
this chapter, you need one image depicting a 16-ton weight, and one depicting a banana, both
of which are shown in Figure 29-1. Their exact sizes aren’t all that important, but you might
want to keep them in the range 100×100 through 200×200 pixels. (You might also want a separate
image for the splash screen, the first screen that greets the user of your game. In this project,
I simply use the weight symbol for that as well.) You should have these two images available in
a common image file format such as GIF, PNG, or JPEG.

Figure 29-1. The weight and banana graphics used in my version of the game

First Implementation
When you use a new tool such as Pygame, it often pays off to keep the first prototype as simple
as possible and to focus on learning the basics of the new tool, rather than the intricacies of the
program itself. Let’s restrict the first version of Squish to an animation of 16-ton weights falling
from above. The steps needed for this are as follows:

1. Initialize Pygame, using pygame.init, pygame.display.set_mode, and
pygame.mouse.set_visible. Get the screen surface with pygame.display.get_surface.
Fill the screen surface with a solid white color (with the fill method) and call
pygame.display.flip to display this change.

2. Load the weight image.

3. Create an instance of a custom Weight class (a subclass of Sprite) using the image. Add
this object to a RenderUpdates group called (for example) sprites. (This will be particularly
useful when dealing with multiple sprites.)

532 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

4. Get all recent events with pygame.event.get. Check all the events in turn—if an event of
type QUIT is found, or if an event of type KEYDOWN representing the escape key (K_ESCAPE)
is found, exit the program. (The event types and keys are kept in the attributes type and
key in the event object. Constants such as QUIT, KEYDOWN, and K_ESCAPE can be imported
from the module pygame.locals.)

5. Call the update method of the sprites group. This in turn calls the update method of the
Weight instance. (You have to implement the latter method yourself.)

6. Call sprites.draw with the screen surface as the argument to draw the Weight sprite at
its current position. (This position changes each time update is called.)

7. Call pygame.display.update with the rectangle list returned from sprites.draw to update
the display only in the right places. (If you don’t need the performance, you can use
pygame.display.flip here to update the entire display.)

8. Go to Step 4.

See Listing 29-1 for code that implements these steps. The QUIT event would occur if the
user quit the game—for example, by closing the window.

Listing 29-1. A Simple “Falling Weights” Animation (weights.py)

import sys, pygame
from pygame.locals import *
from random import randrange

class Weight(pygame.sprite.Sprite):

 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 # image and rect used when drawing sprite:
 self.image = weight_image
 self.rect = self.image.get_rect()
 self.reset()

 def reset(self):
 """
 Move the weight to a random position at the top of the screen.
 """
 self.rect.top = -self.rect.height
 self.rect.centerx = randrange(screen_size[0])

 def update(self):
 """
 Update the weight for display in the next frame.
 """
 self.rect.top += 1

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 533

 if self.rect.top > screen_size[1]:
 self.reset()

Initialize things
pygame.init()
screen_size = 800, 600
pygame.display.set_mode(screen_size, FULLSCREEN)
pygame.mouse.set_visible(0)

Load the weight image
weight_image = pygame.image.load('weight.png')
weight_image = weight_image.convert() # ...to match the display

Create a sprite group and add a Weight
sprites = pygame.sprite.RenderUpdates()
sprites.add(Weight())

Get the screen surface and fill it
screen = pygame.display.get_surface()
white = (255, 255, 255)
screen.fill(white)
pygame.display.flip()

while 1:
 # Check for quit events:
 for event in pygame.event.get():
 if event.type == QUIT:
 sys.exit()
 if event.type == KEYDOWN and event.key == K_ESCAPE:
 sys.exit()
 # Update all sprites:
 sprites.update()
 # Draw all sprites:
 updates = sprites.draw(screen)
 # Update the necessary parts of the display:
 pygame.display.update(updates)

You can run this program with the following command:

$ python weights.py

You should make sure that both weights.py and weight.png (the weight image) are in the
current directory when you execute this.

■Note I have used a PNG image with transparency here, but a GIF image might work just as well. JPEG
images aren’t really well suited for transparency.

534 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

Figure 29-2 shows a screenshot of the program created in Listing 29-1.

Figure 29-2. A simple animation of falling weights

Most of the code should speak for itself. There are, however, a few points that need
explaining:

• All sprite objects should have two attributes called image and rect. The former should
contain a surface object (an image), and the latter should contain a rectangle object (just
use self.image.get_rect() to initialize it). These two attributes will be used when drawing
the sprites. By modifying self.rect, you can move the sprite around.

• Surface objects have a method called convert, which can be used to create a copy with a
different color model. You don’t have to worry about the details, but using convert without
any arguments creates a surface that is tailored for the current display, and displaying it
will be as fast as possible.

• Colors are specified through RGB triples (red-green-blue, with each value being 0–255),
so the tuple (255, 255, 255) represents white.

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 535

You modify a rectangle (such as self.rect in this case) by assigning to its attributes (top,
bottom, left, right, topleft, topright, bottomleft, bottomright, size, width, height, center,
centerx, centery, midleft, midright, midtop, midbottom) or calling methods such as inflate or
move. (These are all described in the Pygame documentation at http://pygame.org/docs/ref/
Rect.html).

Now that the Pygame technicalities are in place, it’s time to extend and refactor your game
logic a bit.

Second Implementation
In this section, instead of walking you through the design and implementation step by step, I
have added copious comments and docstrings to the source code (shown in Listings 29-2
through 29-4 at the end of this section). You can examine the source (“use the source,” remember?)
to see how it works, but here is a short rundown of the essentials (and some not-quite-intuitive
particulars):

• The game consists of five files: config.py, which contains various configuration vari-
ables; objects.py, which contains the implementations of the game objects; squish.py,
which contains the main Game class and the various game state classes; and weight.png
and banana.png, the two images used in the game.

• The rectangle method clamp ensures that a rectangle is placed within another rectangle,
moving it if necessary. This is used to ensure that the banana doesn’t move off-screen.

• The rectangle method inflate resizes (inflates) a rectangle by a given number of pixels
in the horizontal and vertical direction. This is used to shrink the banana boundary, to
allow some overlap between the banana and the weight before a hit (or “squish”) is
registered.

• The game itself consists of a game object and various game states. The game object only
has one state at a time, and the state is responsible for handling events and displaying
itself on the screen. The states may also tell the game to switch to another state. (A Level
state may, for example, tell the game to switch to a GameOver state.)

That’s it. You may run the game by executing the squish.py file, as follows:

$ python squish.py

You should make sure that the other files are in the same directory. In Windows, you can
simply double-click the squish.py file.

■Tip If you rename squish.py to squish.pyw, double-clicking it in Windows won’t pop up a gratuitous
terminal window. If you want to put the game on your desktop (or somewhere else) without moving all the
modules and image files along with it, simply create a shortcut to the squish.pyw file. See also Chapter 18
for details on packaging your game.

536 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

Some screenshots of the game are shown in Figures 29-3 through 29-6.

Listing 29-2. The Squish Configuration File (config.py)

Configuration file for Squish

Feel free to modify the configuration variables below to taste.
If the game is too fast or too slow, try to modify the speed
variables.

Change these to use other images in the game:
banana_image = 'banana.png'
weight_image = 'weight.png'
splash_image = 'weight.png'

Figure 29-3. The Squish opening screen Figure 29-4. A banana about to be squished

Figure 29-5. The “level cleared” screen Figure 29-6. The “game over” screen

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 537

Change these to affect the general appearance:
screen_size = 800, 600
background_color = 255, 255, 255
margin = 30
full_screen = 1
font_size = 48

These affect the behavior of the game:
drop_speed = 5
banana_speed = 10
speed_increase = 1
weights_per_level = 10
banana_pad_top = 40
banana_pad_side = 20

Listing 29-3. The Squish Game Objects (objects.py)

import pygame, config, os
from random import randrange

"This module contains the game objects of the Squish game."

class SquishSprite(pygame.sprite.Sprite):

 """
 Generic superclass for all sprites in Squish. The constructor
 takes care of loading an image, setting up the sprite rect, and
 the area within which it is allowed to move. That area is governed
 by the screen size and the margin.
 """

 def __init__(self, image):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.image.load(image).convert()
 self.rect = self.image.get_rect()
 screen = pygame.display.get_surface()
 shrink = -config.margin * 2
 self.area = screen.get_rect().inflate(shrink, shrink)

class Weight(SquishSprite):

 """
 A falling weight. It uses the SquishSprite constructor to set up
 its weight image, and will fall with a speed given as a parameter
 to its constructor.
 """

538 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

 def __init__(self, speed):
 SquishSprite.__init__(self, config.weight_image)
 self.speed = speed
 self.reset()

 def reset(self):
 """
 Move the weight to the top of the screen (just out of sight)
 and place it at a random horizontal position.
 """
 x = randrange(self.area.left, self.area.right)
 self.rect.midbottom = x, 0

 def update(self):
 """
 Move the weight vertically (downwards) a distance
 corresponding to its speed. Also set the landed attribute
 according to whether it has reached the bottom of the screen.
 """
 self.rect.top += self.speed
 self.landed = self.rect.top >= self.area.bottom

class Banana(SquishSprite):

 """
 A desperate banana. It uses the SquishSprite constructor to set up
 its banana image, and will stay near the bottom of the screen,
 with its horizontal position governed by the current mouse
 position (within certain limits).
 """

 def __init__(self):
 SquishSprite.__init__(self, config.banana_image)
 self.rect.bottom = self.area.bottom

 # These paddings represent parts of the image where there is
 # no banana. If a weight moves into these areas, it doesn't
 # constitute a hit (or, rather, a squish):
 self.pad_top = config.banana_pad_top
 self.pad_side = config.banana_pad_side

 def update(self):
 """
 Set the Banana's center x-coordinate to the current mouse
 x-coordinate, and then use the rect method clamp to ensure
 that the Banana stays within its allowed range of motion.

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 539

 """
 self.rect.centerx = pygame.mouse.get_pos()[0]
 self.rect = self.rect.clamp(self.area)

 def touches(self, other):
 """
 Determines whether the banana touches another sprite (e.g., a
 Weight). Instead of just using the rect method colliderect, a
 new rectangle is first calculated (using the rect method
 inflate with the side and top paddings) that does not include
 the 'empty' areas on the top and sides of the banana.
 """
 # Deflate the bounds with the proper padding:
 bounds = self.rect.inflate(-self.pad_side, -self.pad_top)
 # Move the bounds so they are placed at the bottom of the Banana:
 bounds.bottom = self.rect.bottom
 # Check whether the bounds intersect with the other object's rect:
 return bounds.colliderect(other.rect)

Listing 29-4. The Main Game Module (squish.py)

import os, sys, pygame
from pygame.locals import *
import objects, config

"This module contains the main game logic of the Squish game."

class State:

 """
 A generic game state class that can handle events and display
 itself on a given surface.
 """

 def handle(self, event):
 """
 Default event handling only deals with quitting.
 """
 if event.type == QUIT:
 sys.exit()
 if event.type == KEYDOWN and event.key == K_ESCAPE:
 sys.exit()

 def firstDisplay(self, screen):
 """
 Used to display the State for the first time. Fills the screen
 with the background color.
 """

540 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

 screen.fill(config.background_color)
 # Remember to call flip, to make the changes visible:
 pygame.display.flip()

 def display(self, screen):
 """
 Used to display the State after it has already been displayed
 once. The default behavior is to do nothing.
 """
 pass

class Level(State):

 """
 A game level. Takes care of counting how many weights have been
 dropped, moving the sprites around, and other tasks relating to
 game logic.
 """

 def __init__(self, number=1):
 self.number = number
 # How many weights remain to dodge in this level?
 self.remaining = config.weights_per_level

 speed = config.drop_speed
 # One speed_increase added for each level above 1:
 speed += (self.number-1) * config.speed_increase

 # Create the weight and banana:
 self.weight = weight = objects.Weight(speed)
 self.banana = banana = objects.Banana()
 both = self.weight, self.banana # This could contain more sprites...
 self.sprites = pygame.sprite.RenderUpdates(both)

 def update(self, game):
 "Updates the game state from the previous frame."
 # Update all sprites:
 self.sprites.update()
 # If the banana touches the weight, tell the game to switch to
 # a GameOver state:
 if self.banana.touches(self.weight):
 game.nextState = GameOver()
 # Otherwise, if the weight has landed, reset it. If all the
 # weights of this level have been dodged, tell the game to
 # switch to a LevelCleared state:
 elif self.weight.landed:
 self.weight.reset()

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 541

 self.remaining -= 1
 if self.remaining == 0:
 game.nextState = LevelCleared(self.number)

 def display(self, screen):
 """
 Displays the state after the first display (which simply wipes
 the screen). As opposed to firstDisplay, this method uses
 pygame.display.update with a list of rectangles that need to
 be updated, supplied from self.sprites.draw.
 """
 screen.fill(config.background_color)
 updates = self.sprites.draw(screen)
 pygame.display.update(updates)

class Paused(State):

 """
 A simple, paused game state, which may be broken out of by pressing
 either a keyboard key or the mouse button.
 """

 finished = 0 # Has the user ended the pause?
 image = None # Set this to a file name if you want an image
 text = '' # Set this to some informative text

 def handle(self, event):
 """
 Handles events by delegating to State (which handles quitting
 in general) and by reacting to key presses and mouse
 clicks. If a key is pressed or the mouse is clicked,
 self.finished is set to true.
 """
 State.handle(self, event)
 if event.type in [MOUSEBUTTONDOWN, KEYDOWN]:
 self.finished = 1

 def update(self, game):
 """
 Update the level. If a key has been pressed or the mouse has
 been clicked (i.e., self.finished is true), tell the game to
 move to the state represented by self.nextState() (should be
 implemented by subclasses).
 """
 if self.finished:
 game.nextState = self.nextState()

542 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

 def firstDisplay(self, screen):
 """
 The first time the Paused state is displayed, draw the image
 (if any) and render the text.
 """
 # First, clear the screen by filling it with the background color:
 screen.fill(config.background_color)

 # Create a Font object with the default appearance, and specified size:
 font = pygame.font.Font(None, config.font_size)

 # Get the lines of text in self.text, ignoring empty lines at
 # the top or bottom:
 lines = self.text.strip().splitlines()

 # Calculate the height of the text (using font.get_linesize()
 # to get the height of each line of text):
 height = len(lines) * font.get_linesize()

 # Calculate the placement of the text (centered on the screen):
 center, top = screen.get_rect().center
 top -= height // 2

 # If there is an image to display...
 if self.image:
 # load it:
 image = pygame.image.load(self.image).convert()
 # get its rect:
 r = image.get_rect()
 # move the text down by half the image height:
 top += r.height // 2
 # place the image 20 pixels above the text:
 r.midbottom = center, top - 20
 # blit the image to the screen:
 screen.blit(image, r)

 antialias = 1 # Smooth the text
 black = 0, 0, 0 # Render it as black

 # Render all the lines, starting at the calculated top, and
 # move down font.get_linesize() pixels for each line:
 for line in lines:
 text = font.render(line.strip(), antialias, black)
 r = text.get_rect()
 r.midtop = center, top
 screen.blit(text, r)
 top += font.get_linesize()

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 543

 # Display all the changes:
 pygame.display.flip()

class Info(Paused):

 """
 A simple paused state that displays some information about the
 game. It is followed by a Level state (the first level).
 """

 nextState = Level
 text = '''
 In this game you are a banana,
 trying to survive a course in
 self-defense against fruit, where the
 participants will "defend" themselves
 against you with a 16 ton weight.'''

class StartUp(Paused):

 """
 A paused state that displays a splash image and a welcome
 message. It is followed by an Info state.
 """

 nextState = Info
 image = config.splash_image
 text = '''
 Welcome to Squish,
 the game of Fruit Self-Defense'''

class LevelCleared(Paused):

 """
 A paused state that informs the user that he or she has cleared a
 given level. It is followed by the next level state.
 """

 def __init__(self, number):
 self.number = number
 self.text = '''Level %i cleared
 Click to start next level''' % self.number

544 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

 def nextState(self):
 return Level(self.number+1)

class GameOver(Paused):

 """
 A state that informs the user that he or she has lost the
 game. It is followed by the first level.
 """

 nextState = Level
 text = '''
 Game Over
 Click to Restart, Esc to Quit'''

class Game:

 """
 A game object that takes care of the main event loop, including
 changing between the different game states.
 """

 def __init__(self, *args):
 # Get the directory where the game and the images are located:
 path = os.path.abspath(args[0])
 dir = os.path.split(path)[0]
 # Move to that directory (so that the images files may be
 # opened later on):
 os.chdir(dir)
 # Start with no state:
 self.state = None
 # Move to StartUp in the first event loop iteration:
 self.nextState = StartUp()

 def run(self):
 """
 This method sets things in motion. It performs some vital
 initialization tasks, and enters the main event loop.
 """
 pygame.init() # This is needed to initialize all the pygame modules

 # Decide whether to display the game in a window or to use the
 # full screen:
 flag = 0 # Default (window) mode

C H A P T E R 2 9 ■ P R O J E C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E 545

 if config.full_screen:
 flag = FULLSCREEN # Full screen mode
 screen_size = config.screen_size
 screen = pygame.display.set_mode(screen_size, flag)

 pygame.display.set_caption('Fruit Self Defense')
 pygame.mouse.set_visible(False)

 # The main loop:
 while 1:
 # (1) If nextState has been changed, move to the new state, and
 # display it (for the first time):
 if self.state != self.nextState:
 self.state = self.nextState
 self.state.firstDisplay(screen)
 # (2) Delegate the event handling to the current state:
 for event in pygame.event.get():
 self.state.handle(event)
 # (3) Update the current state:
 self.state.update(self)
 # (4) Display the current state:
 self.state.display(screen)

if __name__ == '__main__':
 game = Game(*sys.argv)
 game.run()

Further Exploration
Here are some ideas for how you can improve the game:

• Add sounds to it.

• Keep track of the score. Each weight dodged could be worth 16 points, for example. How
about keeping a high-score file? Or even an online high-score server (using asyncore or
XML-RPC)?

• Make more objects fall simultaneously.

• Give the player more than one “life.”

• Create a stand-alone executable of your game (using py2exe, for example) and package
it with an installer. (See Chapter 18 for details.)

For a much more elaborate (and extremely entertaining) example of Pygame program-
ming, check out the SolarWolf game by Pete Shinners, the Pygame maintainer (http://
pygame.org/shredwheat/solarwolf). You can find plenty of information and several other

546 C H A P T E R 2 9 ■ P R O JE C T 1 0 : D O - I T - Y O U R S E L F A R C A D E G A M E

games at the Pygame Web site. If playing with Pygame gets you hooked on game development,
you might want to check out these Web sites:

• http://www.gamedev.net

• http://www.flipcode.com

A Web search should give you plenty of other similar sites.

What Now?
Well, this is it. You have finished the last project. If you take stock of what you have accom-
plished (assuming that you have followed all the projects), you should be rightfully impressed
with yourself. The breadth of the topics presented has given you a taste of the possibilities that
await you in the world of Python programming. I hope you have enjoyed the trip this far, and I
wish you good luck on your continued journey as a Python programmer.

547

■ ■ ■

A P P E N D I X A

The Short Version

This is a minimal introduction to Python, based on my popular Web tutorial, “Instant Python”
(http://hetland.org/python/instant-python). It targets programmers who already know a
language or two, but who want to get up to speed with Python. For information on downloading
and executing the Python interpreter, see Chapter 1.

The Basics
To get a basic feel for the Python language, think of it as pseudocode—it’s pretty close to the
truth. Variables don’t have types, so you don’t have to declare them. They appear when you
assign to them, and disappear when you don’t use them anymore. Assignment is done with the
= operator, like this:

x = 42

Note that equality is tested by the == operator.
You can assign several variables at once, like this:

x,y,z = 1,2,3
first, second = second, first
a = b = 123

Blocks are indicated through indentation, and only through indentation. (No begin/end or
braces.) The following are some common control structures:

if x < 5 or (x > 10 and x < 20):
 print "The value is OK."

if x < 5 or 10 < x < 20:
 print "The value is OK."

for i in [1,2,3,4,5]:
 print "This is iteration number", i

x = 10
while x >= 0:
 print "x is still not negative."
 x = x-1

548 A P P E N D I X A ■ T H E S H O R T V E R S I O N

The first two examples are equivalent.
The index variable given in the for loop iterates through the elements of a list (written with

brackets, as in the example). To make an “ordinary” for loop (that is, a counting loop), use the
built-in function range:

Print out the values from 0 to 99, inclusive
for value in range(100):
 print value

The line beginning with # is a comment and is ignored by the interpreter.
Now you know enough (in theory) to implement any algorithm in Python. Let’s add some

basic user interaction. To get input from the user (from a text prompt), use the built-in function
input:

x = input("Please enter a number: ")
print "The square of that number is", x*x

The input function displays the (optional) prompt given and lets the user enter any valid
Python value. In this case, we were expecting a number. If something else (such as a string) is
entered, the program would halt with an error message. To avoid that, you would have to add
some error checking. I won’t go into that here; suffice it to say that if you want the user input
returned verbatim as a string (so that anything can be entered), use the function raw_input
instead. If you wanted to convert an input string s to an integer, you could then use int(s).

■Note If you want to input a string with input, the user has to write the quotes explicitly. In Python, strings
can be enclosed in either single or double quotes.

So, you have control structures, input, and output covered—now you need some snazzy
data structures. The most important ones are lists and dictionaries. Lists are written with brackets,
and can (naturally) be nested:

name = ["Cleese", "John"]
x = [[1,2,3],[y,z],[[[]]]]

One of the nice things about lists is that you can access their elements separately or in
groups, through indexing and slicing. Indexing is done (as in many other languages) by writing
the index in brackets after the list. (Note that the first element has index 0.)

print name[1], name[0] # Prints "John Cleese"
name[0] = "Smith"

Slicing is almost like indexing, except that you indicate both the start and stop index of the
result, with a colon (:) separating them:

x = ["SPAM","SPAM","SPAM","SPAM","SPAM","eggs","and","SPAM"]
print x[5:7] # Prints the list ["eggs","and"]

A P P E N D I X A ■ T H E S H O R T V E R S I O N 549

Notice that the end is noninclusive. If one of the indices is dropped, it is assumed that you
want everything in that direction. In other words, the slice x[:3] means “every element from
the beginning of x up to element 3, noninclusive.” (It could be argued that it would actually
mean element 4 because the counting starts at 0. Oh, well.) The slice x[3:] would, on the other
hand, mean “every element from x, starting at element 3 (inclusive) up to, and including, the
last one.” For really interesting results, you can use negative numbers, too: x[-3] is the third
element from the end of the list.

■Tip While on the subject of indexing, you might be interested to know that the built-in function len gives
you the length of a list.

Now, then—what about dictionaries? To put it simply, they are like lists, except that their
contents aren’t ordered. How do you index them then? Well, every element has a key, or a
name, which is used to look up the element just as in a real dictionary. The following example
demonstrates the syntax used to create dictionaries:

phone = { "Alice" : 23452532, "Boris" : 252336,
 "Clarice" : 2352525, "Doris" : 23624643 }

person = { 'first name': "Robin", 'last name': "Hood",
 'occupation': "Scoundrel" }

Now, to get person’s occupation, you use the expression person["occupation"]. If you
wanted to change his or her last name, you could write

person['last name'] = "of Locksley"

Simple, isn’t it? Like lists, dictionaries can hold other dictionaries. Or lists, for that matter.
And naturally lists can hold dictionaries, too. That way, you can easily make some quite advanced
data structures.

Functions
Next step: abstraction. You want to give a name to a piece of code and call it with a couple of
parameters. In other words, you want to define a function (also called a procedure). That’s easy.
Use the keyword def as follows:

def square(x):
 return x*x

print square(2) # Prints out 4

The return statement is used to return a value from the function.
When you pass a parameter to a function, you bind the parameter to the value, thus creating a

new reference. This means that you can modify the original value directly inside the function,

550 A P P E N D I X A ■ T H E S H O R T V E R S I O N

but if you make the parameter name refer to something else (rebind it), that change won’t
affect the original. This works just like in Java, for example. Let’s take a look at an example:

def change(x):
 x[1] = 4

y = [1,2,3]
change(y)
print y # Prints out [1,4,3]

As you can see, it is the original list that is passed in, and if the function modifies it, these
modifications carry over to the place where the function was called. Note the behavior in the
following example, however, where the function body rebinds the parameter:

def nochange(x):
 x = 0

y = 1
nochange(y)
print y # Prints out 1

Why doesn’t y change now? Because you don’t change the value! The value that is passed
in is the number 1—you can’t change a number in the same way that you change a list. The
number 1 is (and will always be) the number 1. What I did do is change what the parameter x
refers to, and this does not carry over to the environment.

Python has all kinds of nifty things such as named arguments and default arguments and
can handle a variable number of arguments to a single function. For more info on this, see
Chapter 6.

If you know how to use functions in general, what I’ve told you so far is basically what you
need to know about them in Python.

It might be useful to know, however, that functions are values in Python. So if you have a
function such as square, you could do something like the following:

queeble = square
print queeble(2) # Prints out 4

To call a function without arguments, you must remember to write doit() and not doit.
The latter, as shown, only returns the function itself, as a value. This goes for methods in objects,
too. Methods are described in the next section.

Objects and Stuff . . .
I assume you know how object-oriented programming works. (Otherwise, this section might
not make much sense. No problem. Start playing without the objects; or check out Chapter 7.)
In Python, you define classes with the (surprise!) class keyword, as follows:

A P P E N D I X A ■ T H E S H O R T V E R S I O N 551

class Basket:

 # Always remember the *self* argument
 def __init__(self, contents=None):
 self.contents = contents or []

 def add(self, element):
 self.contents.append(element)

 def print_me(self):
 result = ""
 for element in self.contents:
 result = result + " " + `element`
 print "Contains:" + result

Several things are worth noting in the previous example:

• All methods (functions in an object) receive an additional argument at the start of the
argument list, containing the object itself. (Called self in this example, which is
customary.)

• Methods are called like this: object.method(arg1, arg2).

• Some method names, such as __init__ (and __str__, which is discussed later), are
predefined, and mean special things. __init__ is the name of the constructor of the class
(it is the method that is called when you create an instance).

• Some arguments can be optional and given a default value (as mentioned before, under
the section on functions). This is done by writing the definition like

def spam(age=32): ...

Here, spam can be called with one or zero parameters. If none is used, then the parameter
age will have the value 32.

• There is a rather mysterious use of the logical operator or. This use, based on so-called
short-circuit logic, will be explained a bit later in this section.

• Backticks convert an object to its string representation. (So if element contains the
number 1, then `element` is the same as "1", whereas 'element' is a literal string.)

• The plus sign + is used also for concatenating sequences, and strings are really just
sequences of characters (which means that you can use indexing and slicing and the len
function on them. Cool, huh?).

■Note The strategy of building a string piecemeal with the plus operator is simple but not particularly
efficient. If possible, it’s better to gather the component strings in a list, and join them with the join string
method. See Chapter 3 for more details.

552 A P P E N D I X A ■ T H E S H O R T V E R S I O N

No methods or member variables (attributes) are protected (or private or the like) in
Python. Encapsulation is pretty much a matter of programming style. (If you really need it,
there are naming conventions that will allow some privacy, such as prefixing a name with a
single or double underscore).

Now, about that short-circuit logic . . .
All values in Python can be used as logic values. Some of the more empty ones, such as

False, [], 0, "", and None represent logical falsity, while most other values (such as True, [0], 1,
and "Hello, world") represent logical truth.

Logical expressions such as a and b are evaluated like this: First, check if a is true. If it is
not, then simply return it. If it is, then simply return b (which will represent the truth value of
the expression). The corresponding logic for a or b is this: If a is true, then return it. If it isn’t,
then return b.

This short-circuit mechanism enables you to use and and or like the Boolean operators
they are supposed to implement, but it also enables you to write short and sweet little condi-
tional expressions. For example, the statement

if a:
 print a
else:
 print b

could instead be written

print a or b

Actually, this is somewhat of a Python idiom, so you might as well get used to it. The Basket
constructor (Basket.__init__) uses this strategy in handling default parameters. The argument
contents has a default value of None (which is, among other things, false); therefore, to check if
it had a value, you could write

if contents:
 self.contents = contents
else:
 self.contents = []

Instead, the constructor uses the simple statement

self.contents = contents or []

Why don’t you give it the default value of [] in the first place? Because of the way Python
works, this would give all the Baskets the same empty list as default contents. As soon as one of
them started to fill up, they all would contain the same elements, and the default would not be
empty anymore. To learn more about this, see the discussion about the difference between
identity and equality in Chapter 5.

A P P E N D I X A ■ T H E S H O R T V E R S I O N 553

■Note When using None as a placeholder as done in the Basket.__init__ method, using
contents is None as the condition is safer than simply checking the argument’s Boolean value,
since this will allow you to pass in a false value such as an empty list of your own (to which you could
keep a reference outside the object).

If you would like to use an empty list as default value, you can avoid the problem of sharing
this among instances by doing the following:

def __init__(self, contents=[]):
 self.contents = contents[:]

Can you guess how this works? Instead of using the same empty list everywhere, you use
the expression contents[:] to make a copy. (You simply slice the entire thing.)

So, to actually make a Basket and to use it (to call some methods on it), you would do
something like this:

b = Basket(['apple','orange'])
b.add("lemon")
b.print_me()

This would print out the contents of the Basket—an apple, an orange, and a lemon.
There are magic methods other than __init__. One such method is __str__, which defines

how the object wants to look if it is treated like a string. You could use this in the basket instead
of print_me:

def __str__(self):
 result = ""
 for element in self.contents:
 result = result + " " + `element`
 return "Contains:" + result

Now, if you wanted to print the basket b, you could just use

print b

Cool, huh?
Subclassing is done like this:

class SpamBasket(Basket):
 # ...

Python allows multiple inheritance so you can have several superclasses in the paren-
theses, separated by commas. Classes are instantiated like this: x = Basket(). Constructors
are, as I said, made by defining the special member function __init__. Let’s say that SpamBasket
had a constructor __init__(self, type). Then you could make a spam basket like this:
y = SpamBasket("apples").

554 A P P E N D I X A ■ T H E S H O R T V E R S I O N

■Note You can use the special method __del__ to implement destructor behavior, but because you don’t
know exactly when an object is deleted (the deallocation is done automatically by garbage collection), you
should not rely too much on this method.

If you, in the constructor of SpamBasket, needed to call the constructor of one or more
superclasses, you could call it like this: Basket.__init__(self). Note that in addition to
supplying the ordinary parameters, you have to explicitly supply self because the superclass
__init__ doesn’t know which instance it is dealing with.

For more about the wonders of object-oriented programming in Python, see Chapter 7.

Some Loose Ends
Let me just quickly review a few other useful things before ending this appendix. Most useful
functions and classes are put in modules, which are really text files with the file name extension
.py that contain Python code. You can import these and use them in your own programs. For
example, to use the function sqrt from the standard module math, you can do either

import math
x = math.sqrt(y)

or

from math import sqrt
x = sqrt(y)

For more information on the standard library modules, see Chapter 10.
All the code in the module/script is run when it is imported. If you want your program to

be both an importable module and a runnable program, you might want to add something like
this at the end of it:

if __name__ == "__main__": main()

This is a magic way of saying that if this module is run as an executable script (that is, it is not
being imported into another script), then the function main should be called. Of course, you
could do anything after the colon there.

And for those of you who want to make an executable script in UNIX, use the following first
line to make it run by itself:

#!/usr/bin/env python

Finally, a brief mention of an important concept: exceptions. Some operations (such as
dividing something by zero or reading from a nonexistent file) produce an error condition or
exception. You can even make your own and raise them at the appropriate times.

If nothing is done about the exception, your program ends and prints out an error message.
You can avoid this with a try/except statement. For example:

A P P E N D I X A ■ T H E S H O R T V E R S I O N 555

def safe_division(a, b):
 try:
 return a/b
 except ZeroDivisionError: pass

ZeroDivisionError is a standard exception. In this case, you could have checked if b was
zero, but in many cases, that strategy is not feasible. And besides, if you removed the try/except
statement in safe_division, thereby making it a risky function to call (called something like
unsafe_division), you could still do the following:

try:
 unsafe_division(a, b)
except ZeroDivisionError:
 print "Something was divided by zero in unsafe_division"

In cases in which you typically would not have a specific problem, but it might occur, using
exceptions enables you to avoid costly testing and so forth.

Well, that’s it. Hope you learned something. Now go and play. And remember the Python
motto of learning: “Use the source” (which basically means read all the code you can get your
hands on).

557

■ ■ ■

A P P E N D I X B

Python Reference

This is not a full Python reference by far—you can find that in the standard Python documen-
tation (http://python.org/doc/ref). Rather, this is a handy “cheat sheet” that can be useful for
refreshing your memory as you start out programming in Python.

Expressions
This section summarizes Python expressions. Table B-1 lists the most important basic (literal)
values in Python; Table B-2 lists the Python operators, along with their precedence (those with
high precedence are evaluated before those with low precedence); Table B-3 describes some of
the most important built-in functions; Tables B-4 through B-6 describe the list methods,
dictionary methods, and string methods, respectively.

Table B-1. Basic (Literal) Values

Type Description Syntax Samples

Integer Numbers without a fractional part 42

Long integer Large integer numbers 42L

Float Numbers with a fractional part 42.5, 42.5e-2

Complex Sum of a real (integer or float) and
imaginary number

38 + 4j, 42j

String An immutable sequence of characters 'foo', "bar", """baz""", r'\n'

Unicode An immutable sequence of Unicode
characters

u'foo', u"bar", u"""baz"""

558 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

Table B-2. Operators

Operator Description Precedence

lambda Lambda expression 1

or Logical or 2

and Logical and 3

not Logical negation 4

in Membership test 5

not in Negative membership test 5

is Identity test 6

is not Negative identity test 6

< Less than 7

> Greater than 7

<= Less than or equal to 7

>= Greater than or equal to 7

== Equal to 7

!= Not equal to 7

| Bitwise or 8

^ Bitwise exclusive or 9

& Bitwise and 10

<< Left shift 11

>> Right shift 11

+ Addition 12

- Subtraction 12

* Multiplication 13

/ Division 13

% Remainder 13

+ Unary identity 14

- Unary negation 14

~ Bitwise complement 15

** Exponentiation 16

x.attribute Attribute reference 17

x[index] Subscription 18

x[index1:index2[:index3]] Slicing 19

f(args...) Function call 20

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 559

(...) Parenthesized expression or tuple display 21

[...] List display 22

{key:value, ...} Dictionary display 23

`expressions...` String conversion 24

Table B-3. Some Important Built-in Functions

Function Description

abs(number) Returns the absolute value of a number.

apply(function[, args[, kwds]]) Calls a given function, optionally with parameters.

bool(object) Returns True or False, depending on the Boolean
value of object.

callable(object) Checks whether an object is callable.

chr(number) Returns a character whose ASCII code is the
given number.

cmp(x, y) Compares x and y—if x<y, it returns a negative number;
if x>y, it returns a positive number; and if x==y, it
returns zero.

complex(real[, imag]) Returns a complex number with the given real
(and, optionally, imaginary) component.

delattr(object, name) Deletes the given attribute from the given object.

dict([mapping-or-sequence]) Constructs a dictionary, optionally from another
mapping or a list of (key, value) pairs. May also be
called with keyword arguments.

dir([object]) Lists (most of) the names in the currently visible
scopes, or optionally (most of) the attributes of the
given object.

divmod(a, b) Returns (a//b, a%b) (with some special rules
for floats).

enumerate(iterable) Iterates over (index, item) pairs, for all items
in iterable.

eval(string[, globals[, locals]]) Evaluates a string containing an expression, optionally
in a given global and local scope.

execfile(file[, globals[, locals]]) Executes a Python file, optionally in a given global
and local scope.

file(filename[, mode[, bufsize]]) Creates a file object with a given file name, optionally
with a given mode and buffer size.

filter(function, sequence) Returns a list of the elements from the given
sequence for which function returns true.

Table B-2. Operators (Continued)

Operator Description Precedence

560 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

float(object) Converts a string or number to a float.

getattr(object, name[, default]) Returns the value of the named attribute of the given
object, optionally with a given default value.

globals() Returns a dictionary representing the current
global scope.

hasattr(object, name) Checks whether the given object has the named
attribute.

help([object]) Invokes the built-in help system, or prints a help
message about the given object.

hex(number) Converts a number to a hexadecimal string.

id(object) Returns the unique ID for the given object.

input([prompt]) Equivalent to eval(raw_input(prompt)).

int(object[, radix]) Converts a string or number (optionally with a given
radix) or number to an integer.

isinstance(object, classinfo) Checks whether the given object is an instance
of the given classinfo value, which may be either
a class object, a type object, or a tuple of class and
type objects.

issubclass(class1, class2) Checks whether class1 is a subclass of class2 (every
class is a subclass of itself).

iter(object[, sentinel]) Returns an iterator object, which is either
object.__iter__(), an iterator constructed
for iterating a sequence (if object supports
__getitem__), or, if sentinel is supplied, an
iterator that keeps calling object in each iteration
until sentinel is returned.

len(object) Returns the length (number of items) of the
given object.

list([sequence]) Constructs a list, optionally with the same items as
the supplied sequence.

locals() Returns a dictionary representing the current local
scope (do not modify this dictionary).

long(object[, radix]) Converts a string (optionally with a given radix) or
number to a long integer.

map(function, sequence, ...) Creates a list consisting of the values returned by the
given function when applying it to the items of the
supplied sequence(s).

max(object1, [object2, ...]) If object1 is a nonempty sequence, the largest
element is returned; otherwise, the largest of the
supplied arguments (object1, object2, . . .) is returned.

Table B-3. Some Important Built-in Functions (Continued)

Function Description

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 561

min(object1, [object2, ...]) If object1 is a nonempty sequence, the smallest
element is returned; otherwise, the smallest of
the supplied arguments (object1, object2, . . .) is
returned.

oct(number) Converts an integer number to an octal string.

open(filename[, mode[, bufsize]]) An alias for file (use open, not file, when
opening files).

ord(char) Returns the ASCII value of a single character (a string
or Unicode string of length 1).

pow(x, y[, z]) Returns x to the power of y, optionally modulo z.

range([start,]stop[, step]) Returns a numeric range (as a list) with the given
start (inclusive, default 0), stop (exclusive), and step
(default 1).

raw_input([prompt]) Returns data input by the user as a string, optionally
using a given prompt.

reduce(function, sequence[,
initializer])

Applies the given function cumulatively to the items
of the sequence, using the cumulative result as the
first argument and the items as the second argument,
optionally with a start value (initializer).

reload(module) Reloads an already loaded module and returns it.

repr(object) Returns a string representation of the object, often
usable as an argument to eval.

reversed(sequence) Returns a reverse iterator over the sequence.

round(float[, n]) Rounds off the given float to n digits after the decimal
point (default zero).

setattr(object, name, value) Sets the named attribute of the given object to the
given value.

sorted(iterable[, cmp][, key][,
reverse])

Returns a new sorted list from the items in iterable.
Optional parameters are the same as for the list
method sort.

str(object) Returns a nicely formatted string representation of
the given object.

sum(seq[, start]) Returns the sum of a sequence of numbers, added to
the optional parameter start (default 0).

tuple([sequence]) Constructs a tuple, optionally with the same items as
the supplied sequence.

type(object) Returns the type of the given object.

unichr(number) The Unicode version of chr.

unicode(object[, encoding[, errors]]) Returns a Unicode encoding of the given object,
possibly with a given encoding, and a given mode
for handling errors (either 'strict', 'replace', or
'ignore', 'strict' being the default).

Table B-3. Some Important Built-in Functions (Continued)

Function Description

562 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

vars([object]) Returns a dictionary representing the local scope, or
a dictionary corresponding to the attributes of the
given object (do not modify the returned dictionary).

xrange([start,]stop[, step]) Similar to range, but the returned object uses less
memory, and should only be used for iteration.

zip(sequence1, ...) Returns a list of tuples, where each tuple contains an
item from each of the supplied sequences. The returned
list has the same length as the shortest of the supplied
sequences.

Table B-4. List Methods

Method Description

list.append(object) Equivalent to list[len(list):len(list)] = [object].

list.count(object) Returns the number of i’s for which list[i] == object.

list.extend(sequence) Equivalent to list[len(list):len(list)] = sequence.

list.index(object) Returns the smallest i for which list[i] == object
(or raises a ValueError if no such i exists).

list.insert(index, object) Equivalent to list[index:index] = [object] if index >= 0;
if index < 0, object is prepended to the list.

list.pop([index]) Removes and returns the item with the given index
(default –1).

list.remove(object) Equivalent to del list[list.index(object)].

list.reverse() Reverses the items of list in place.

list.sort([cmp][, key]
[, reverse])

Sorts the items of list in place (stable sorting). Can be
customized by supplying a comparison function, cmp; a key
function, key, which will create the keys for the sorting); and
a reverse flag (a Boolean value).

Table B-5. Dictionary Methods

Method Description

dict.clear() Removes all the items of dict.

dict.copy() Returns a copy of dict.

dict.fromkeys(seq[, val]) Returns a dictionary with keys from seq and values set
to val (default None). May be called directly on dictio-
nary type, dict, as a class method.

dict.get(key[, default]) Returns dict[key] if it exists, otherwise it returns the
given default value (default None).

Table B-3. Some Important Built-in Functions (Continued)

Function Description

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 563

dict.has_key(key) Checks whether dict has the given key.

dict.items() Returns a list of (key, value) pairs representing the
items of dict.

dict.iteritems() Returns an iterable object over the same (key, value)
pairs as returned by dict.items.

dict.iterkeys() Returns an iterable object over the keys of dict.

dict.itervalues() Returns an iterable object over the values of dict.

dict.keys() Returns a list of the keys of dict.

dict.pop(key) Removes and returns the value corresponding to the
given key.

dict.popitem() Removes an arbitrary item from dict and returns it as
a (key, value) pair.

dict.setdefault(key[, default]) Returns dict[key] if it exists; otherwise it returns the
given default value (default None) and binds dict[key]
to it.

dict.update(other) For each item in other, adds the item to dict (possibly
overwriting existing items). Can also be called with
arguments similar to the dictionary constructor, dict.

dict.values() Returns a list of the values in dict (possibly containing
duplicates).

Table B-6. String Methods

Method Description

string.capitalize() Returns a copy of the string in which the
first character is capitalized

string.center(width[, fillchar]) Returns a string of length max(len(string),
width) in which a copy of string is centered,
padded with fillchar (default is space)

string.count(sub[, start[, end]]) Counts the occurrences of the substring
sub, optionally restricting the search to
string[start:end]

string.decode([encoding[, errors]]) Returns decoded version of the string using
the given encoding, handling errors as
specified by errors ('strict', 'ignore',
or 'replace')

string.encode([encoding[, errors]]) Returns encoded version of the string using
the given encoding, handling errors as
specified by errors ('strict', 'ignore', or
'replace')

Table B-5. Dictionary Methods (Continued)

Method Description

564 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

string.endswith(suffix[, start[, end]]) Checks whether string ends with suffix,
optionally restricting the matching with the
given indices start and end

string.expandtabs([tabsize]) Returns a copy of the string in which tab
characters have been expanded using
spaces, optionally using the given tabsize
(default 8)

string.find(sub[, start[, end]]) Returns the first index where the substring
sub is found, or –1 if no such index exists,
optionally restricting the search to
string[start:end]

string.index(sub[, start[, end]]) Returns the first index where the substring
sub is found, or raises a ValueError if no
such index exists, optionally restricting the
search to string[start:end]

string.isalnum() Checks whether the string consists of
alphanumeric characters

string.isalpha() Checks whether the string consists of
alphabetic characters

string.isdigit() Checks whether the string consists of digits

string.islower() Checks whether all the case-based char-
acters (letters) of the string are lowercase

string.isspace() Checks whether the string consists of
whitespace

string.istitle() Checks whether all the case-based char-
acters in the string following non-case-
based letters are uppercase and all other
case-based characters are lowercase

string.isupper() Checks whether all the case-based char-
acters of the string are uppercase

string.join(sequence) Returns a string in which the string elements
of sequence have been joined by string

string.ljust(width[, fillchar]) Returns a string of length max(len(string),
width) in which a copy of string is left
justified, padded with fillchar (default is
space)

string.lower() Returns a copy of the string in which
all case-based characters have been
lowercased

string.lstrip([chars]) Returns a copy of the string in which all
chars have been stripped from the beginning
of the string (default whitespace
characters)

Table B-6. String Methods (Continued)

Method Description

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 565

string.replace(old, new[, max]) Returns a copy of the string in which the
occurrences of old have been replaced with
new, optionally restricting the number of
replacements to max

string.rfind(sub[, start[, end]]) Returns the last index where the substring
sub is found, or –1 if no such index exists,
optionally restricting the search to
string[start:end]

string.rindex(sub[, start[, end]]) Returns the last index where the substring
sub is found, or raises a ValueError if no
such index exists, optionally restricting the
search to string[start:end]

string.rjust(width[, fillchar]) Returns a string of length max(len(string),
width) in which a copy of string is right
justified, padded with fillchar (default
is space)

string.rstrip([chars]) Returns a copy of the string in which all
chars have been stripped from the end of
the string (default whitespace characters)

string.rsplit([sep[, maxsplit]]) Same as split, but when using maxsplit,
counts from right to left

string.split([sep[, maxsplit]]) Returns a list of all the words in the string,
using sep as the separator (splits on all
whitespace if left unspecified), optionally
limiting the number of splits to maxsplit

string.splitlines([keepends]) Returns a list with all the lines in string,
optionally including the line breaks (if
keepends is supplied and is true)

string.startswith(prefix[, start[, end]]) Checks whether string starts with prefix,
optionally restricting the matching with the
given indices start and end

string.strip([chars]) Returns a copy of the string in which all
chars have been stripped from the beginning
and the end of the string (default whitespace
characters)

string.swapcase() Returns a copy of the string in which all the
case-based characters have had their case
swapped

string.title() Returns a copy of the string in which all the
words are capitalized

string.translate(table[, deletechars]) Returns a copy of the string in which all
characters have been translated using
table (constructed with the maketrans
function in the string module), optionally
deleting all characters found in the string
deletechars

Table B-6. String Methods (Continued)

Method Description

566 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

Statements
This section gives you a quick summary of each of the statement types in Python.

Simple Statements
Simple statements consist of a single (logical) line.

Expression Statements

Expressions can be statements on their own. This is especially useful if the expression is a function
call or a documentation string.
Example:

raw_input('Press <Enter> when ready')

Assert Statements

Assert statements check whether a condition is true and raises an AssertionError (optionally
with a supplied error message) if it isn’t.
Examples:

assert age >= 12, 'Children under the age of 12 are not allowed'

Assignment Statements

Assignment statements bind variables to values. Multiple variables may be assigned to simul-
taneously (through sequence unpacking) and assignments may be chained.
Examples:

x = 42 # Simple assignment
name, age = 'Gumby', 60 # Sequence unpacking
x = y = z = 10 # Chained assignments

Augmented Assignment Statements

Assignments may be augmented by operators. The operator will then be applied to the existing
value of the variable and the new value, and the variable will be rebound to the result. If the orig-
inal value is mutable, it may be modified instead (with the variable staying bound to the original).
Examples:

x *= 2 # Doubles x
x += 5 # Adds 5 to x

string.upper() Returns a copy of the string in which all the
case-based characters have been uppercased

string.zfill(width) Pads string on the left with zeros to fill width

Table B-6. String Methods (Continued)

Method Description

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 567

The pass Statement

The pass statement is a “no-op,” which does nothing. It is useful as a placeholder, or as the only
statement in syntactically required blocks where you want no action to be performed.
Example:

try: x.name
except AttributeError: pass
else: print 'Hello', x.name

The del Statement

The del statement unbinds variables and attributes, and removes parts (positions, slices, or
slots) from data structures (mappings or sequences). It cannot be used to delete values directly
because values are only deleted through garbage collection.
Examples:

del x # Unbinds a variable
del seq[42] # Deletes a sequence element
del seq[42:] # Deletes a sequence slice
del map['foo'] # Deletes a mapping item

The print Statement

The print statement writes one or more values (automatically formatted with str, separated by
single spaces) to a given stream, with sys.stdout being the default. It adds a line break to the
end of the written string unless the print statement ends with a comma.
Examples:

print 'Hello, world!' # Writes 'Hello, world\n' to sys.stdout
print 1, 2, 3 # Writes '1 2 3\n' to sys.stdout
print >> somefile, 'xyz' # Writes 'xyz' to somefile
print 42, # Writes '42 ' to sys.stdout

The return Statement

The return statement halts the execution of a function and returns a value. If no value is
supplied, None is returned.
Examples:

return # Returns None from the current function
return 42 # Returns 42 from the current function
return 1, 2, 3 # Returns (1, 2, 3) from the current function

The yield Statement

The yield statement temporarily halts the execution of a generator and yields a value. A generator
is a form of iterator and can be used in for loops, among other things.
Example:

yield 42 # Returns 42 from the current function

568 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

The raise Statement

The raise statement raises an exception. It may be used without any arguments (inside an
except clause, to re-raise the currently caught exception), with a subclass of Exception and an
optional argument (in which case an instance is constructed), or with an instance of a subclass
of Exception.
Examples:

raise # May only be used inside except clauses
raise IndexError
raise IndexError, 'index out of bounds'
raise IndexError('index out of bounds')

The break Statement

The break statement ends the immediately enclosing loop statement (for or while) and continues
execution immediately after that loop statement.
Example:

while True:
 line = file.readline()
 if not line: break
 print line

The continue Statement

The continue statement is similar to the break statement in that it halts the current iteration of
the immediately enclosing loop, but instead of ending the loop completely, it continues execution
at the beginning of the next iteration.
Example:

while True:
 line = file.readline()
 if not line: break
 if line.isspace(): continue
 print line

The import Statement

The import statement is used to import names (variables bound to functions, classes, or other
values) from an external module.
Examples:

import math
from math import sqrt
from math import sqrt as squareroot
from math import *

A P P E N D I X B ■ P Y T H O N R E F E R E N C E 569

The global Statement

The global statement is used to mark a variable as global. It is used in functions to allow state-
ments in the function body to rebind global variables. Using the global statement is generally
considered poor style and should be avoided whenever possible.
Example:

count = 1
def inc():
 global count
 count += 1

The exec Statement

The exec statement is used to execute strings containing Python statements, optionally with a
given global and local namespace (dictionaries).
Examples:

exec 'print "Hello, world!"'
exec 'x = 2' in myglobals, mylocals # ... where myglobals and mylocals are dicts

Compound Statements
Compound statements contain groups (blocks) of other statements.

The if Statement

The if statement is used for conditional execution, and it may include elif and else clauses.
Example:

if x < 10:
 print 'Less than ten'
elif 10 <= x < 20:
 print 'Less than twenty'
else:
 print 'Twenty or more'

The while Statement

The while statement is used for repeated execution (looping) while a given condition is true. It
may include an else clause (which is executed if the loop finishes normally, without any break
or return statements, for instance).
Example:

x = 1
while < 100:
 x *= 2
print x

570 A P P E N D I X B ■ P Y T H O N R E F E R E N C E

The for Statement

The for statement is used for repeated execution (looping) over the elements of sequences or
other iterable objects (objects having an __iter__ method that returns an iterator). It may
include an else clause (which is executed if the loop finishes normally, without any break or
return statements, for instance).
Example:

for i in range(10, 0, -1):
 print i
print 'Ignition!'

The try Statement

The try statement is used to enclose pieces of code where one or more known exceptions may
occur, and enables your program to trap these exceptions and perform exception handling
code if an exception is trapped.
Example:

try:
 1/0
except ZeroDivisionError:
 print "Can't divide anything by zero."

Function Definitions

Function definitions are used to create function objects and to bind global or local variables to
these function objects.
Example:

def double(x):
 return x*2

Class Definitions

Class definitions are used to create class objects and to bind global or local variables to these
class objects.
Example:

class Doubler:
 def __init__(self, value):
 self.value = value
 def double(self):
 self.value *= 2

571

■ ■ ■

A P P E N D I X C

Online Resources

As you learn Python, the Internet will serve as an invaluable resource. This appendix
describes some of the Web sites that may be of interest to you as you are starting out. If you are
looking for something Python-related that isn’t described here, I suggest that you first look at
the official Python Web site (http://python.org), and then use your favorite Web search engine,
or the other way around. There is a lot of information about Python online; chances are you’ll
find something. If you don’t, you can always try comp.lang.python (described later in this chapter).
If you’re an IRC user (see http://irchelp.org for information), you might want to check out
the #python channel on irc.freenode.net.

Python Distributions
Several Python distributions are available. Here are some of the more prominent ones:

Official Python Distribution (http://python.org/download). This comes with a default
IDE (integrated development environment) called IDLE (for more information, see
http://python.org/idle).

ActivePython (http://activestate.com). This is ActiveState’s Python distribution, which
includes several nonstandard packages in addition to the official distribution. This is also
the home of Visual Python, a Python plug-in for Visual Studio .NET.

Jython (http://www.jython.org). Jython is the Java implementation of Python.

IronPython (http://ironpython.com, http://workspaces.gotdotnet.com/ironpython).
IronPython is the C# implementation of Python.

MacPython (http://www.cwi.nl/~jack/macpython.html). MacPython is the Macintosh
port of Python.

win32all (http://starship.python.net/crew/mhammond). The Python for Windows
extensions. If you have ActivePython installed, you already have all these extensions.

572 A P P E N D I X C ■ O N L I N E R E S O U R C E S

Python Documentation
Answers to most of your Python questions are most likely somewhere on the Python.org Web
site. The documentation can be found at http://python.org/doc, with the following subdivisions:

The Official Python Tutorial (http://python.org/doc/tut). A relatively simple introduction
to the language.

The Python Language Reference (http://python.org/doc/ref). This document contains a
precise definition of the Python language. It may not be the place to start when learning
Python, but it contains precise answers to most questions you might have about the language.

The Python Library Reference (http://python.org/doc/lib). This is probably the most
useful piece of Python documentation you’ll ever find. It describes all (or most) of the
modules in the standard Python library. If you are wondering how to solve a problem in
Python, this should be the first place you look—perhaps the solution already exists in the
libraries.

Extending and Embedding the Python Interpreter (http://python.org/doc/ext). This is a
document that describes how to write Python extension modules in the C language, and
how to use the Python interpreter as a part of larger C programs. (Python itself is imple-
mented in C.)

Macintosh Library Modules (http://python.org/doc/mac). This document describes
functionality specific to the Macintosh port of Python.

The Python/C API Reference Manual (http://python.org/doc/api). This is a rather tech-
nical document describing the details of the Python/C API (application programming
interface), which enables C programs to interface with the Python interpreter.

Two other useful documentation resources are Python Documentation Online (http://
pydoc.org) and pyhelp.cgi (http://starship.python.net/crew/theller/pyhelp.cgi), which
allow you to search the standard Python documentation. If you want some “recipes” and solutions
provided by the Python community, the Python Cookbook (http://aspn.activestate.com/
ASPN/Python/Cookbook) is a good place to look.

The future of Python is decided by the language’s Benevolent Dictator For Life (BDFL),
Guido van Rossum, but his decisions are guided and informed by so-called Python Enhance-
ment Proposals, which may be accessed at http://python.org/peps. Various HOWTO documents
(relatively specific tutorials) can be found at http://python.org/doc/howto.

Useful Toolkits and Modules
One of the main sources for finding software implemented in Python (including useful toolkits
and modules you can use in your own programs) is the Vaults of Parnassus (http://www.vex.net/
parnassus). If you can’t find what you’re looking for there, try a standard Web search, or
perhaps take a look at freshmeat.net (http://freshmeat.net) or SourceForge (http://sf.net).

A P P E N D I X C ■ O N L I N E R E S O U R C E S 573

Table C-1 lists the URLs of some of the most well-known GUI toolkits available for Python.
For a more thorough description, see Chapter 12. Table C-2 lists the URLs of the third-party
packages used in the ten projects.

Newsgroups and Mailing Lists
An important forum for Python discussion is the Usenet group comp.lang.python. If you’re
serious about Python, I recommend that you at least skim this group regularly. Its companion
group, comp.lang.python.announce, contains announcements about new Python software
(including new Python distributions, Python extensions, and software written using Python).

Several official mailing lists are available. For instance, the comp.lang.python group is
mirrored in the python-list@python.org mailing list. If you have a Python problem and need
help, simply send an e-mail to help@python.org (assuming that you’ve exhausted all other
options, of course). For learning about programming in Python, the tutor list (tutor@python.org)
may be useful. For information about how to join these (and other) mailing lists, see http://
mail.python.org/mailman/listinfo.

Table C-1. Some Well-Known GUI Toolkits for Python

Package URL

Tkinter http://python.org/topics/tkinter/doc.html

wxPython http://www.wxpython.org

PythonWin http://starship.python.net/crew/mhammond

Java Swing http://java.sun.com/docs/books/tutorial/uiswing

PyGTK http://www.pygtk.org

PyQt http://www.thekompany.com/projects/pykde

Table C-2. The Third-Party Modules Used in the Ten Projects

Package URL

Psycopg http://initd.org/Software/psycopg

MySQLdb http://sourceforge.net/projects/mysql-python

Pygame http://www.pygame.org

PyXML http://sourceforge.net/projects/pyxml

ReportLab http://www.reportlab.org

SimpleXMLRPCServer http://www.sweetapp.com/xmlrpc

575

Index

■Symbols
- operator 558

!= operator 558

#! character sequence 21

% character

conversion specifiers 56

% operator 558

& operator 558

*operator

as distribution operator 123, 124

as gathering operator 121

**operator

as distribution operator 123, 124

as gathering operator 122

* operator 558

** operator 558

+ operator 558

concatenating sequences 551

.pyw file extension

reasons for 280

/ operator 558

= operator 547

== operator 547, 558

> operator 558

>= operator 558

>> operator 558

^ operator 558

__all__ Variable 212

__delattr__ method

implementing properties with old-style
classes 188

__delitem__ method

basic sequence and mapping protocol 180

__dict__ attribute 156

__doc__ attribute 112

__future__ module 19

__getattr__ method

implementing properties with old-style
classes 188, 189

__getattribute__ method

endless loop trap 189

implementing properties with old-style
classes 188

__getitem__ method 182

basic sequence and mapping protocol 180

__init__ method 173, 175

__iter__ method 173, 189, 190

__len__ method

basic sequence and mapping protocol
180, 182

__setattr__ method 188

__setitem__ method

basic sequence and mapping protocol 180

| operator 558

~ operator 558

` ` backticks 551

converting a Python value to a string 25–26

■A
abs function 17, 559

abstraction 109, 139

classes

and types 147–148

attributes, functions and methods 149

creating 148

inheritance 153–154

576 ■I N D E X

interfaces 155–156

methods 150–151

multiple superclasses 154–155

namespaces 151–152

superclasses 153

functions

creating 111

documenting 112

functional programming 133–137

parameters 113–126

Python functions 112–113

objects 139–140

encapsulation 143–146

inheritance 146–147

polymorphism 140–143

recursion 129–130

binary search 131–133

factorial and power 130–131

scoping 126–127

rebinding global variables 127–128

structure 110

uses 109–110

accessor methods 184–185

action attribute

<form> tag 476

action method

rule objects 400, 401

ActivePython 571

alternative Python distribution 6

add function

operator module 142

add method

Set class 223

addFilter method

Parser class 401, 402

addition operator (+) 37

addRule method

Parser class 401, 402

algorithms 9, 10

alignment 58

allow_reuse_address attribute

SimpleXMLRPCServer class 509

and operator 92, 558

apilevel module property

Python DB API 286

append method

lists 43

appendleft method

deque type 226

apply function 137, 559

arcade game 527

first implementation 531–535

further exploration 545

goals 528

preparations 530–531

problem 527

second implementation 535–545

tools 528–530

argv variable

sys module 215

arithmetic operators 11

arraysize attribute

cursor objects 289

Art of Computer Programming, The

Knuth, Donald 387

Art of UNIX Programming, The

Raymond, Eric S. 387

as clause

import statements 83

open functions 83

asctime function

time module 227

assert method

TestCase class 348

assert statements 93, 566

assertAlmostEqual method

TestCase class 348

577■I N D E X

assertEqual method

TestCase class 348

AssertionError class 566

assertNotAlmostEqual method

TestCase class 348

assertNotEqual method

TestCase class 348

assertRaises method

TestCase class 348

assignment statements 13, 83, 566

= operator 547

augmented assignment statements 84,
85, 566

chained assignments 84

changing lists 41

sequence unpacking 83–84

slice assignments 42

asterisk width specifier 58

async_chat class

asynchat module 460

collect_incoming_data method 460–461

found_terminator method 460–461

handle_close method 461

push method 461

set_terminator method 460–461

asynchat module 302, 455–456

async_chat class 460

multiple connections 304

asynchronous I/O

multiple connections 304

select and poll functions 306

asyncore framework 456

asyncore module 302, 455–456

dispatcher class 457

loop method 458

multiple connections 304

AttributeError class 161, 170

attributes, binding to functions 149

augmented assignments 84–85, 566

■B
backticks (` `) 551

converting a Python value to a string 25–26

BaseRequestHandler class 303

bdist command 377

Beautiful Soup module 319–320

Beck, Kent et al

Refactoring 387

Test-Driven Development 387

binary mode

mode argument, open function 257

bind method

dispatcher class 458

socket class 298

blit method

pygame.display module 529

transfering contents of one surface to
another 529

blocking 298

blocks, indentation 85–86, 547

blocks generator

instant markup project 394

body method

NNTP class 441, 442

bool function 559

Boole, George 86

Boolean statements 91–92

Boolean values 86

break statements, 98, 568

else clauses 167

build command 374

built-in functions 16–17, 559

built-in methods

issubclass method 153

bulletin board project 483

first implementation 486–489

further exploration 498

goals 483–484

preparations 484–485

578 ■I N D E X

problem 483

second implementation 489–490

edit.cgi 493–494

main.cgi 490, 492

save.cgi 494

testing 496

view.cgi 492–493

tools 484

■C
callable function 559

callback method

adding to handler superclass 398

callproc() method

cursor objects 289

Canvas class

line method 413

pdfgen module 413

catching exceptions 162

CGI (Common Gateway Interface)

CGI security risks 323

debugging with cgitb 324

dynamic web pages 321

adding the Pound Bang line 321–322

preparing the Web server 321

setting file permissions 322

invoking CGI scripts without forms 326

remote editing with CGI 473–481

simple CGI script 323–324

simple form 327–328

using cgi module 325–326

cgi module 302, 321, 330, 474

using 325–326

cgitb module 330

debugging with 324, 474

enable function 324

tracebacks 486

chained assignments 84

chained comparison operators 89

character sets 237

ChatRoom class

commands implemented 466

ChatServer class 457–459

ChatSession class 459–463

enter method 466

checkIndex function 182

choice() function

random module 228

chr function 559

class keyword

defining classes 550

class methods

creating with staticmethod and
classmethod types 187

classes

and types 147–148

attributes, functions and methods 149

creating 148

defining classes 550

definitions 570

interfaces 155–156

methods 150–151

multiple superclasses 154–155

namespaces 151–152

subclassing built-in classes 173

superclasses 153

clear method

dictionaries 72–73

close function

fileinput module 219

close method

connection object 288, 486

cursor objects 289

file object 261

Shelve class 231

cmath module 18

Cmd class

cmd module 509

command interpretation, modeling
463–464

579■I N D E X

cmd module 252, 501

Cmd class 463–464, 509

cmp function 89, 559

code coverage

testing 343

collect_incoming_data method

async_chat class 460–461

collections module

deque type 225–226

command interpretation, modeling

Cmd class 463–464

command prompt

running scripts from 20

CommandHandler class

creating rooms 464–465

command-line tools

using with subprocess module 352

comments 22, 112

commit method

connection object 288, 486

Common Gateway Interface. See CGI

comp.lang.python Usenet group 573

comp.lang.python.announce Usenet
group 573

comparison operators 89

chaining 89

comparing strings and sequences 91

equality operator 89

identity operator (is) 90, 91

membership operator (in) 91

compile function

re module 239

complex function 559

compound statements 569

concatenation

sequences with plus sign + 551

strings 24

condition method

rule objects 400, 401

conditional execution

if Statements 87

conditional statements 86–87

elif clauses 88

else clauses 87

if statements 87

nesting blocks 88

conditions 86, 87

assertions 93

boolean statements 91–92

comparison operators 89–91

ConfigParser module 384

configuration 383

configuration files 384–385

extracting constants 383–384

conflict function 197

connect function

common parameters 287

connection object

methods 288

close method 486

commit method 486

cursor method 486

constructors 174

calling unbound superclass constructor
177–178

creating 174–175

overriding 175–177

super function 178–179

ContentHandler class

xml.sax.handler module 425

continue statements 99, 568

conversion specifiers 54

anatomy 56

field width 57–58

precision 57

tuples 55

convert function 292

Cookie module 302

580 ■I N D E X

cookie-cutter code

automating 367–368

cookielib module 302

copy method

dictionaries 73, 74

Cormen, Thomas H. et al

Introduction to Algorithms 387

count method

lists 43

CREATE TABLE command 485

create_socket method

dispatcher class 458

ctypes tool

speeding up programs 361

cursor function 288

cursor object

attributes 289

methods 288

dictfetchall method 487, 488

dictfetchone method 486

execute method 486

fetchall method 486, 488

fetchone method 486

cursor method

connection object 288, 486

custom exception classes 162

■D
Dalke, Andrew

Sorting Mini-HOWTO 49

data structures 31

sequences 31

database application example 291–292

creating and populating tables 292–293

searching and dealing with results 294–295

database support 285

database application example 291–292

creating and populating tables 292–293

searching and dealing with results
294–295

Python Database API 285

connections and cursors 287–289

exceptions 287

global variables 286

types 289

DatabaseError exception class 287

DataError exception class 287

datetime module 227, 251

deallocating objects 366

Debian Linux

installing Python 5

def statements 194, 549

commenting 112

defining functions 549

defining generator-function 194

default arguments 550

parameters 120

del statements 42, 103, 104, 168, 567

delattr function 559

deque type

collections module 225–226

description attribute

cursor objects 289

Design Patterns

Gang of Four 387

dict function 69, 559

dictfetchall() method

cursor object 487, 488

dictfetchone() method

cursor object 486

dictionaries 67

basic operations 69–70

telephone book example 70–71

creating 549

iterating over 96

methods 72, 562

clear method 72–73

copy method 73–74

fromkeys method 74

581■I N D E X

get method 74–75

has_key method 75

items method 75

iteritems method 75

iterkeys method 76

itervalues method 77

keys method 76

pop method 76

popitem method 76

setdefault method 76

telephone book example 78

update method 77

values method 77

string formatting 71, 72

syntax 68

dict function 69

uses 67, 68

difflib module 251

dir function 211, 559

dispatcher class

bind method 458

create_socket method 458

handle_accept method 458, 461, 466

listen method 458

subclassing 457

distribution operators

* operator 123–124

** operator 123–124

Distutils toolkit 373

compiling extensions 378–379

installation 374–376

installers 378

introduction 373–374

py2exe extension

creating executable programs 379

wrapping up 376–378

division

adding statement to program 11

operators 11

divmod function 559

docstrings

adding to functions 112

doctest tool 344–346

Document Object Model (DOM) 424

documentation, modules 213–214

DOM (Document Object Model) 424

double-clicking 22

draw method

Group class 530, 532

RenderUpdates class 529

■E
eight queens example 195

backtracking 196

base case 197–198

finding conflicts 197

recursive case 198–199

state representation 196

the problem 196

wrapping it up 200

elif clauses 88

else clauses 87

exceptions 166

using in loops 100–101

email module 302

empty lists 38

enable function

cgitb module 324

encapsulation 143–145, 552

privacy 145–146

end method

adding to handler superclass 398

Match Objects 242

endless loop trap 189

implementing properties with old-style
classes 188, 189

enter method

ChatSession class 466

582 ■I N D E X

enumerate function 559

numbered iteration 97

environ mapping

os module 217

environment variables

setting 209

equality operator 89, 547

compared to identity 552

error class

pygame module 529

Error exception class 287

error messages. See tracebacks

escape function

re module 239, 241

escaping quotes 23–24

eval function 559

eval statements 105–106

event handling

wxPython GUI toolkit 278

except clause

adding to try/except statement 164

catching all exceptions 165–166

catching the object 165

catching two exceptions with one block 165

using more than one 164

Exception class 161

catching all exceptions 167

creating custom exception classes 162

examples of using with raise statement
160–161

exception handling

SimpleXMLRPCServer class 337

exceptions 159

built-in exceptions 161

catching exceptions 162

all exceptions 165–167

catching two exceptions with one
block 164

raise statement 163

catching the object 165

custom exception classes 162

finally clause 168

functions and 168–169

introduction 159–160

objects 159–160

raise statement 160–161

using else clauses 166

using more than one except clause 164

Zen of 169–170

exec statements 104–105, 569

execfile function 559

execute method

cursor object 289, 486

executemany method

cursor object 289

executing programs 19–20

exit function

sys module 215

exponentiation operator (**) 12

compared to pow function 16

expression statements 566

expressions 10–12

compared to statements 14

Python reference 557–566

extend method

lists 44

deque type 226

extending Python

introduction 357–358

Jython and IronPython 358–360

writing C extensions 360

hacking it on your own 365–370

SWIG 361–365

tools 360

extendleft method

deque type 226

Extreme Programming 341

583■I N D E X

■F
Factory class

twisted.internet.protocol module 309

fail method

TestCase class 348

failIf method

TestCase class 348

failIfAlmostEqual method

TestCase class 348

failIfEqual method

TestCase class 348

failUnless method

TestCase class 348

failUnlessAlmostEqual method

TestCase class 348

failUnlessEqual method

TestCase class 348

failUnlessRaises method

TestCase class 348

Fault class

xmlrpclib module 510

fetchall method

cursor object 289, 486, 488

fetchmany method

cursor object 289

fetchone method

cursor object 289, 486

Fibonacci numbers computation

example of using abstraction 109–110

field width

conversion specifiers 57, 58

file function 559

file iterators 266–267

file object

close method 261

read and write methods 258

reading and writing lines 260–261

seek and tell methods 260

file sharing project

adding GUI 517

first implementation 518–521

further exploration 525

goals 517

preparations 518

second implementation 521–525

tools 517

file sharing with XML-RPC 499

first implementation 501–508

further exploration 516

goals 500

preparations 501

problem 499–500

second implementation 509

client interface 509–510

exceptions 510

trying it out 511–516

validating file names 510–511

tools 501

fileinput module 219

example 220–221

functions 219

lazy line iteration 265

file-like objects 255

filelineno function

fileinput module 219

filename function

fileinput module 219

files 255

basic methods 257

examples 262–263

reading and writing 258–260

reading and writing lines 260–261

closing 261

iterating over file contents 263

byte by byte 264

file iterators 266–267

lazy line iteration 265

584 ■I N D E X

one line at a time 264

reading everything 265

opening 255–257

filter function 134, 135, 559

filterwarnings function 160

finally clause

exceptions 168

find method 60, 61

findall function

re module 239, 240

flatten generator 193

rewritten as plain function 195

flip function

pygame.display module 529, 531, 532

float function 560

floats 10

Font function

pygame.font module 529

for loops 95

compared to list comprehension 101

range function 548

for statements 570

forking

multiple connections 304

SocketServer module 305

<form> tag

action attribute 476

format function 488

--formats switch 377

found_terminator method

async_chat class 460, 461

framework for extensions 367–368

from module import function 18

reasons not to use 19

fromkeys method

dictionaries 74

frozenset type

sets module 223

ftplib module 302

functions 16, 549–550

and exceptions 168–169

compared to methods 149

creating 111

definitions 570

documenting 112

example of module containing a function
205

functional programming 133

apply function 137

filter function 134–135

map function 134

reduce function 135–137

parameters 113

changing 114–119

collecting 121–123

distributing 123–124

keyword parameters and defaults
119–121

supplying and receiving example
124–126

values 113

Python functions 112–113

■G
Gamma, Erich et al

Design Patterns 387

Gang of Four

Design Patterns 387

garbage collection 366–367

gathering operators

* operator 121

** operator 122

generator-function 194

generator-iterator 194

generators 191

avoiding 194–195

eight queens example 195

backtracking 196

base case 197–198

585■I N D E X

finding conflicts 197

problem 196

recursive case 198–199

state representation 196

wrapping it up 200

in general 194

making a generator 191–192

recursive generators 192–193

making safer 193–194

Gentoo Linux

installing Python 5

get function

pygame.event module 530, 532

get method

dictionaries 74, 75

get_surface function

pygame.display module 529, 531

getattr function 560

Cmd class 464

working with __getattr__ method 189

getdefaultencoding function

sys module 436

gethostname function

socket module 298

getopt module 252

getrandbits function

random module 228

Getting Started with HTML

Dave Raggett 391

global statements 569

global variables

rebinding 127–128

globals function 560

gopherlib module 302

Graphical User Interfaces. See GUI

graphics project. See painting a pretty picture

graphs and trees 195

Group class

draw method 530, 532

pygame.sprite module 530

update method 532

group method

Match Objects 242

GUI (Graphical User Interfaces) 269

text editor application example 269–270

toolkits 270

wxPython GUI toolkit

creating windows and components
273–274

downloading and installing 271–272

event handling 278

finished program 278–280

labels and positions 274–277

writing programs 272–273

■H
handle_accept method

dispatcher class 458, 461, 466

handle_charref method

HTMLParser module 318

handle_close method

async_chat class 461

handle_comment method

HTMLParser module 318

handle_data method

HTMLParser module 318, 319

handle_decl method

HTMLParser module 318

handle_endtag method

HTMLParser module 318, 319

handle_entityref method

HTMLParser module 318

handle_pi method

HTMLParser module 318

handle_startendtag method

HTMLParser module 318

handle_starttag method

HTMLParser module 318, 319

has_key method

dictionaries 75

586 ■I N D E X

hasattr function 560

working with __getattr__ method 189

working with __setattr__ method 189

head method

NNTP class 441, 442

heapify function

heapq module 224

heappop function

heapq module 224

heappush function

heapq module 223

heapq module

introduction 223–225

heapreplace function

heapq module 225

help function 212–213, 560

--help switch 343, 374

--help-commands switch 374

hex function 560

hexadecimal numbers 13

hotshot module

profiling 353

HTML

automatically marking up plain text 391

parsing 315

Tidy fixes common errors 315–316

HTMLDestination class

creating 445, 447

HTMLParser

using 318–319

HTMLParser module

methods 318

using 318

HTMLRenderer class

as subclass of handler superclass 398

httplib module 302

Hunt, Andrew and Thomas, David

Pragmatic Programmer, The 387

■I
id function 560

identity compared to equality 552

IDLE

saving and executing programs 19

if statements 16, 569

catching exceptions 162

conditional execution 87

imaplib module 302

immutability

parameters 118–119

import command 18, 19

import statements 568

as clause 83

fetching functions from external
modules 203

importing something as something else
82–83

import-only-once behavior

modules 204, 205

in operator 91, 558

membership 39–40

include_dirs variable

setting 291

indentation 85, 86

Index class 180

index method

lists 44

IndexError class 161

indexing lists 548

indexing sequences 33–34

infinite recursion 129

inheritance 146–147

classes 153–154

list, dict, and str 183

multiple inheritance 553

superclasses and multiple inheritance 155

init function

pygame module 529, 531

587■I N D E X

initialization 38

naming functions 370

inplace parameter

fileinput module 220

input compared to raw_input 26

input function 548, 560

fileinput module 219

insert method

lists 45

inspect module 156, 408

install command 375

instant markup project 391

first implementation 394

adding markup 395–396

goals for project 392

preparation 392–393

problem defined 391

second implementation 396

components 396

constructing rules and filters 402–403

filters 401

handler superclass 398–399

handlers 397

Parser class 401

putting it all together 403–408

Rule superclass 400

rules 399–400

tools 392

int function 548, 560

integers 10

large integers 12–13

IntegrityError exception class 287

InterfaceError exception class 287

interfaces

and introspection 155–156

polymorphism 155–156

InternalError exception class 287

interpreter, interactive 8–9

Introduction to Algorithms

Cormen, Thomas H. et al 387

IOError class 161

IronPython 571

alternative Python distribution 7

extending 358–360

is not operator 558

is operator 90, 91, 558

isfirstline function

fileinput module 219, 220

isinstance function 560

isstdin function

fileinput module 219

issubclass function 560

issubclass method

built-in method 153

item access 179

basic sequence and mapping protocol
180–182

subclassing list, dict and str 182–184

items method

dictionaries 75

iter function 560

iteration utilities

numbered iteration 97

parallel iteration 96–97

iterators

__iter__ method 173

iterator protocol 190

making sequences from iterators 191

iteritems method

dictionaries 75, 96

iterkeys method

dictionaries 76, 96

itertools module 252

itervalues method

dictionaries 77, 96

588 ■I N D E X

■J
Java Swing GUI toolkit 271, 573

example of using with Jython 282–283

join method 61–62

as inverse of split method 63

JUnit test framework

unittest module 347

Jython 571

alternative Python distribution 7

example of using with Java Swing GUI
toolkit 282–283

extending 358–360

■K
KeyError class 161

keys method

dictionaries 76

keyword arguments

using with wx constructors 274

keyword parameters 119–121

Knuth, Donald

Art of Computer Programming, The 387

■L
lambda expressions 133

lambda operator 558

introduction 392

len function 40, 551, 560

library_dirs variable

setting 291

line method

Canvas class 413

lineno() function

fileinput module 219

LinePlot class

reportlab.graphics.charts.lineplots
package 418

LineReceiver class

Twisted framework 455

LineReceiver protocol

twisted.protocols.basic module 310

lines generator

instant markup project 394

linesep variable

os module 217

Linux

installing Python 3–4

installing Python with RPM 4–5

list comprehension 101–102

list function 41, 560

listen method

dispatcher class 458

socket class 298

listenTCP function

twisted.internet.reactor module 309

lists 31, 40, 548

assigning to slices 42

changing 41

changing lists 41

deleting elements 42

list function 41

methods 43, 562

advanced sorting 48–49

append method 43

count method 43

extend method 44

index method 44

insert method 45

pop method 45–46

remove method 46

reverse method 46–47

sort method 47–48

load function

pygame.image module 530

locals function 560

localtime function

time module 441

ALTEX

589■I N D E X

localtime function

time module 227

logging 385–387

logging module 252

long function 560

long strings 27

loop method

asyncore module 458

loops 93, 94

breaking out of

break statement 98

continue statement 99

else clauses 100–101

while true/break idiom 99–100

for loops 95

iteration utilities

numbered iteration 97

parallel iteration 96–97

reversed and sorted iteration 98

while loops 94

lower method 62, 91

■M
MacPython 571

Macs

installing Python 6

magic methods 173, 553

constructors 174–175

calling unbound superclass constructor
177–178

overriding 175–177

item access 179

basic sequence and mapping protocol
180–182

subclassing list, dict and str 182–184

iterators

iterator protocol 190

making sequences from iterators 191

setting up Python 209

super function 178–179

mailbox module 302

mailcap module 302

MainLoop method

wx.App class 273

maketrans function 60, 64

MANIFEST.in file 376

map function 134, 560

markup project. See instant markup project

Martelli, Alex

boy/girl pairing solution 102

Python Cookbook 93

match function

re module 239

MatchObjects and groups

re module 241

math module

sqrt function 554

Matplotlib/pylab

alternative to and ReportLab 420

max function 40, 560

MAX_HISTORY_LENGTH constant

setting to 6 504

McMillan installer

installing Distutils toolkit 378

md5 module 251

membership 39

in operator 39–40

memory leaks 366

methods

compared to functions 149

creating 150–151

definitions 148

mhlib module 302

min function 40, 561

minimum field width

conversion specifiers 56

mktime function

time module 227

PYX

590 ■I N D E X

mod_python

CGI handler 330–331

configuring Apache 330

installing 329

installing on Unix 329

installing on Windows 329

PSP 331–332

Publisher 332–334

mode argument

open function 256–257

modulator tool

speeding up programs 361

modules 17, 18, 203, 554

example of module containing a
function 205

example of module with conditional test
code 206

exploring 211

__all__ Variable 212

dir function 211

documentation 213–214

help function 212–213

using source code 214

making available 207

location 207–208

telling interpreter where to look 208–209

naming 210

packages 210–211

standard library 215

cmd module 252

csv module 251

datetime module 251

deques 225–226

difflib module 251

fileinput module 219–221

getopt module 252

heaps 223–225

itertools module 252

logging module 252

md5 and sha modules 251

optparse module 252

os module 216–218

profile module 251

random module 228

re module 235–251

Sets 221–223

shelve module 231–235

sys module 215–216

time module 226–227

timeit module 251

trace module 251

using to define things 205–207

writing 203–204

modules mapping

sys module 215

modulus operator 11

Monty Python

Self-Defense Against Fresh Fruit 527

multiple connections 303

asynchronous I/O 305–308

forking and threading with
SocketServers 305

multiple exceptions

catching 165

multiple inheritance 553

superclasses 155

multiple superclasses 154–155

multiplication of sequences example 38–39

multiplication operator (*) 37

MySQL database

creating for bulletin board project 485

suitability for bulletin board project 484

MySQLdb module 573

■N
named arguments 550

NameError class 161

namespaces 151–152

nested scopes 128

nesting lists 548

591■I N D E X

nesting blocks 88

Network News Transfer Protocol. See NNTP

network programming 297

multiple connections 303

asynchronous I/O 305–308

forking and threading with
SocketServers 305

socket module 298–300

SocketServer module 302–303

standard library modules 302

Twisted framework 308

downloading and installing 308

writing a Twisted server 309–311

urllib and urlib2 300

opening remote files 300

retrieving remote files 301

virtual tea party 455–472

newnews method

NNTP class 441–442

news project 439

first implementation 441–444

further exploration 452

goals 440

preparations 440–441

problem 439

second implementation 444–452

tools 440

nextfile function

fileinput module 219, 220

nextset method

cursor objects 289

nlargest function

heapq module 225

NNTP (Network News Transfer Protocol)

introduction 439

NNTP class

methods 441

NNTP server

access required to use nntplib 440

nntplib library 439, 440

nntplib module 302

NNTPSource class

creating 447

None 38

not in operator 558

not operator 558

NotImplementedError exception class 217

NotSupportedError exception class 287

nsmallest function

heapq module 225

Nullsoft Scriptable Install System

installing Distutils toolkit 378

numbered iteration 97

enumerate function 97

numbers 10–12

cmath module and complex numbers 18

hexadecimal numbers 13

octal numbers 13

NumPy tool

speeding up programs 361

■O
object-oriented design 156–157

objects 139–140

encapsulation 143–145

privacy 145–146

inheritance 146–147

polymorphism 140–142

forms of 142–143

oct function 561

octal numbers 13

Official Python Distribution 571

online reources 571

distributions 571

documentation 572

newsgroups and mailing lists 573

toolkits and modules 572–573

592 ■I N D E X

open function

buffering 257

mode argument 256–257

opening files 255–256

shelve module 231

webbrowser module 218

open functions 83, 561

OperationalError exception class 287

operator module

add function 142

optparse module 252

or logical operator 551

or operator 558

OR operator (|)

finding union of two sets 222

ord function 561

os module

example 217–218

functions and variables 216

urandom function 228

os.path module 501

■P
packages 210–211

packaging programs 373

Distutils toolkit 373

installation 374–376

introduction 373–374

wrapping up 376–378

painting a pretty picture project

creating line diagram from sunspots data
411–420

further exploration 420

goals 412

problems 411

tools 412

visualizing data from text file 411

palindromes 362–365

detartrated 369–370

parallel iteration 96–97

zip function 97

parameters

changing 114–115

reasons for 115–118

collecting 121–123

distributing 123–124

immutability 118–119

keyword parameters and defaults 119–121

supplying and receiving example 124–126

values 113

paramstyle module property

Python DB API 286

parse function

xml.sax module 425

Parser class

addFilter method 402

addRule method 402

instant markup project 401

methods 401

pass statements 102, 567

password handling

sha module 478–479

path variable

sys module 215

patterns

greedy and nongreedy patterns 243

pdfgen module

generating PDFs 413

PDFs, generating with ReportLab 413

peer-to-peer interaction 499

pickle 285

pipe characters (|) 259

PlainDestination class

creating 445, 447

platform variable

sys module 215

593■I N D E X

playful programming 381

flexibility 381–382

configuration 383–385

prototyping 382–383

introduction 381

learning more 387

logging 385–387

minimum requirements 387

project structure 388

plus sign

concatenating sequences 551

poll function

asynchronous I/O 306–308

PolyLines, creating 415

polymorphism 140–142

forms of 142–143

interfaces 155–156

pop method

dictionaries 76

lists 45, 46

popen functions

running the Tidy program 317

popitem method

dictionaries 76

sequence unpacking 84

poplib module 302

positional parameters 119

PostgreSQL database

creating for bulletin board project 485

using for bulletin board project 484

pound bang #! 21

pow function 16, 561

Pragmatic Programmer, The

Andrew Hunt and David Thomas 387

precision 54

conversion specifiers 57

print statements 14, 16, 567

using with commas 81–82

procedures 112

profile module 251, 353

profiling as alternative to unit testing
353–354

ProgrammingError exception class 287

programs

importing as module 203

packaging 373–380

properties 184–185

__getattr__, __setattr__, and others
188–189

property function 185–186

static methods and class methods 187–188

working on old style classes 173

property function 173

creating properties 185–186

protocols

description 179

prototyping 382–383

PSP (Python Server Pages) 331–332

Psyco tool

speeding up programs 360

psycopg module 573

importing 484

Publisher 332–334

pump function

pygame.event module 530

push method

async_chat class 461

PuTTY software 457

Py_DECREF macro 366–367

Py_INCREF macro 366–368

py_modules directive 376

PyChecker tool 351

importing as module 351

using 352–353

Pygame

using for arcade game 528

web site 527

594 ■I N D E X

pygame module 528, 573

error class 529

init function 529, 531

Surface function 528

pygame.display module 529

blit method 529

flip function 529, 531, 532

get_surface function 529

set_caption function 529

set_mode function 529, 531

update function 529, 532

pygame.event module

get function 530, 532

pump function 530

pygame.font module

Font function 529

pygame.image module

load function 530

pygame.locals module 529

importing constants from 532

pygame.mouse module

set_visible function 531

pygame.sprite module

Group class 530

Sprite class 530

PyGTK GUI toolkit 271, 573

PyLint tool 351

importing as module 351

using 352, 353

PyQt GUI toolkit 271, 573

Pyrex tool

speeding up programs 361

pysqlite

downloading and installing 290–291

getting started 291

Python

__future__ module 19

algorithms 9–10

alternative distributions 6–7

basics 547

cmath module 18

command prompt 20

comments 22

compiling from source 5–6

extending 357–570

functions 16, 549–550

getting input from user 15–16

hexadecimal numbers 13

installing on Debian Linux 5

installing on Gentoo Linux 5

installing on Linux 3–4

installing on Linux with RPM 4–5

installing on Macs 6

installing on Windows 1–2

interpreter 8–9

keeping up to date 8

large integers 12–13

loose ends 554

making scripts behave like normal
programs 21–22

modules 17–18

numbers and expressions 10–12

objects 550–554

octal numbers 13

reference 557

expressions 557–566

statements 566–570

saving and executing programs 19–20

statements 14–15

strings 23

concatenating strings 24

input compared to raw input 26

long strings 27

raw strings 27–28

single-quoted strings and escaping
quotes 23–24

string representations 25

Unicode strings 29

variables 13

595■I N D E X

Python C API 365

hand-coded palindrome module 369–370

python command 3

Python Cookbook

Alex Martelli 93

Python Database API 285

connections and cursors 287–289

exceptions 287

global variables 286

types 289

constructors and special values 289

Python functions 112–113

Python Server Pages 331–332

python-list@python.org mailing list 573

PYTHONPATH environment variable

including module directory in 208

PythonWin GUI toolkit 271, 573

 package 412

PyXML module 573

■Q
-Qnew command-line switch 11

quote function

urllib module 301

quote_plus function

urllib module 301

■R
Raggett, Dave

Getting Started with HTML 391

raise statement

catching exceptions 163

examples of using with Exception class
160–161

raise statements 568

random module 501

examples 229–231

introduction 228

random function

random module 228

randomString function 510

randrange function

random module 228

range function 561

checking for arguments 213

for loops 548

raw strings 27–28

raw_input 23

compared to input 26

raw_input function 241, 548, 561

rawDataReceived event handler 310

Raymond, Eric S.

Art of UNIX Programming, The 387

RDF Site Summary. See RSS

re module

content of 238–241

examples 244–251

importing 160

MatchObjects and groups 241

support for regular expressions 235

using group numbers and functions in
substitutions 242–243

read method

file object 258

readline method

file object 260–261

using in a while loop 264

Really Simple Syndication. See RSS

recursion 129

binary search 131–133

factorial and power 130–131

parts 129–130

recursive generators 192–193

making safer 193–194

reduce function 135, 136, 137, 561

Refactoring

Kent Beck et al 387

refactoring, description 439

reference counting 366–367

PYX

596 ■I N D E X

regex module

importing 159

register_function method

SimpleXMLRPCServer class 501

register_instance method

SimpleXMLRPCServer class 501

regular expressions

alternatives and subpatterns 237

beginning and end of string 238

changing plain text to markup 391

character sets 236

content of re module 238–241

escaping special characters 236

introduction 235

optional and repeated subpatterns 237–238

support for in re module 235

wildcard 236

reload function 561

remote editing with CGI project 473

first implementation 474–475

further exploration 481

goals 473–474

preparations 474

problem 473

second implementation 476

edit.cgi 476–478

index.html 476

running the editor 479–481

save.cgi 478–479

tools 474

remove method

lists 46

Set class 223

RenderUpdates class

draw method 529

replace method 62

reportlab module 573

importing 412

ReportLab package 412

creating graphics and documents in PDF
format 411

drawing with 413–415

 as alternative to 420

workings of 412

reportlab.graphics package 413

reportlab.graphics.charts.lineplots package

LinePlot class 418

repr function 25, 561

requirement specification 342–343

return statements 194, 567

returning values from functions 549

reverse method

lists 46, 47, 98

reversed function 47, 98, 561

Rich Site Summary. See RSS

robotparser module 302

rollback method

connection object 288

Rossum, Guido 19

round function 17, 561

rowcount attribute

cursor objects 289

rpm --install command

installing RPMs 423

RPM package manager

installing Python on Linux 4, 5

RPMs

installing with rpm --install command 423

RSS

introduction 335–336

rule objects

action method 401

condition method 401

methods 400

PYX

597■I N D E X

■S
safe_substitute method 55

sample function

random module 228

saving programs 19–20

SAX

parser 422

processing XML files 421

workings of 424

scoping 126–127

nested scopes 128

rebinding global variables 127

screen scraping

Beautiful Soup module 319–320

HTMLParser 318–319

introduction 313–314

Tidy 314

getting Tidy library 316

introduction 315–316

using command-line Tidy 317

XHTML 317

sdist command 376

search function

re module 239

security

CGI security risks 323

seek method

file object 260

select function

asynchronous I/O 306, 307

select module 304, 456

select module

polling event constants 307

select function 304, 456

self parameter 149

Self-Defense Against Fresh Fruit 527

sep variable

os module 217

sequence multiplication example 38–39

sequence unpacking

assignment statements 83–84

popitem method 84

sequences

common sequence operations 32

adding sequences 37

indexing 33–34

length, minimum, and maximum 40

longer steps 36–37

membership 39–40

multiplication 37

None, empty lists, and initialization 38

shortcut 35

slicing sequences 34–35

introduction 31–32

serve_forever method

SimpleXMLRPCServer class 501

ServerProxy object 338

Set class

add method 223

remove method 223

sets module 221–223

union method 222

set_caption function

pygame.display module 529

set_mode function

pygame.display module 529, 531

set_terminator method

async_chat class 460–461

set_visible function

pygame.mouse module 531

setattr function 561

setdefault method

dictionaries 76, 102

setdefaultencoding function

sys module 436

setinputsizes method

cursor objects 289

598 ■I N D E X

setoutputsize method

cursor objects 289

sets module

frozenset type 223

Set class 221–223

set type 221

SetSizer method

wx.Panel class 276

sha module 251

password handling 478–479

shadowing 127

shebang 21

Shelve class

close method 231

shelve module 285

example 232–235

introduction 231

open function 231

potential problem 231–232

Show method

wx.Frame class 273

shuffle() function

random module 228

Simple API for XML. See SAX

simple statements 566

Simple Wrapper and Interface Generator. See
SWIG

SimpleWebSource class

creating 447

SimpleXMLRPCServer class

allow_reuse_address attribute 509

handling of exceptions 337

register_function method 501

register_instance method 501, 505

registering Node with 503

serve_forever method 501

SimpleXMLRPCServer module 302, 501, 573

importing 501

single-quoted strings 23–24

Slashdot

as example of bulletin board 483

sleep function

time module 227

slice assignments

assigning lists to slices 42

inserting elements 42

slicing lists 548

slicing sequences 34–35

SmallTalk language

privacy of object state 145

smtpd module 302

smtplib module 302

socket class

bind method 298

listen method 298

socket module 298

socket module

gethostname function 298

network programming 298

socket class 298

SocketServer class 297

SocketServer module

classes 303

forking and threading 305

network programming 302–303

sort method 47, 48, 98

advanced sorting 48, 49

sorted function 98, 561

Sorting Mini-HOWTO 49

Andrew Dalke 49

span method

Match Objects 242

special characters

character sets 237

parsing in XML files 436

split method 63

Join as inverse of 61–62

599■I N D E X

split function

re module 239, 240

Sprite class

pygame.sprite module 530

sqrt function 18

math module 554

Stackless Python

alternative Python distribution 6

StandardError exception class 287

start method

adding to handler superclass 398

Match Objects 242

start_paragraph method

adding to handler superclass 398

statements 14–15

assignment statements 83–85

blocks 85–86

conditional statements 86–87

elif clauses 88

else clauses 87

if statements 87

nesting blocks 88

conditions 86

assertions 93

boolean statements 91–92

comparison operators 89–91

del statements 103–104

eval statements 105–106

exec statements 104–105

if statements 16

import statements 82–83

loops 93–94

breaking out of 98–100

for loops 95

iterating over dictionaries 96

iteration utilities 96–98

while loops 94

pass statements 102

print statements 14, 16

using with commas 81–82

static methods

creating with staticmethod objects 187

stderr variable

sys module 215, 258

stdin variable

iteratorability of 266

sys module 215, 258

stdout class

sys module 215, 258

write method 310

StopIteration exception 190

str function 25, 561

StreamRequestHandler class 303

strftime function

time module 227, 441

string formatting

dictionaries 71, 72

string module 501

Template class 72

template strings 54

values from 60

string representations 25

strings

comparing strings and sequences 91

concatenating strings 24

input compared to raw_input 26

long strings 27

methods 563–565

raw strings 27, 28

single-quoted strings and escaping quotes
23–24

string formatting 53–56

conversion types 56–57

signs, alignment, and zero-padding
58–59

simple conversion 56

width and precision 57

600 ■I N D E X

string methods 59–60

find method 60–61

join method 61–62

lower method 62

replace method 62

split method 63

strip method 63

translate method 64–65

string representations 25

Unicode strings 29

strip method 63

strptime function

time module 227

sub method

adding to handler superclass 398

sub function

re module 239, 240

subclassing

built-in classes 173

list, dict, and str 182–184

subprocess module

running the Tidy program 317

using command-line tools 352

subprocess module

speeding up programs 361

substitutions

using group numbers and functions in
242–243

sum function 561

sunspots example

creating line diagram from data 411

first implementation 413

constructing some polylines 415

drawing with ReportLab 413–414

prototype 416

preparations 412

second implementation 417

getting the data 417–418

using LinePlot class 418

super function

using 178–179

working on old style classes 173

superclasses

multiples 154–155

specifying 153

Surface function

pygame module 528

SWIG tool 361

compiling, linking, and using 364–365

detecting palindromes 362–363

extending Python 358

installing 362

interface file 363

introduction 361

running 363

using 362

synchronous network programming 298

SyntaxError class 161

sys module

example 216

functions and variables 215

getdefaultencoding function 436

setdefaultencoding function 436

system function

os module 217

■T
TCPServer class

SocketServer module 303

telephone book example 70

revised 78

tell method

file object 260

telnetlib module 302

Template class

string Module 72

template strings 54

Test-Driven Development

Beck, Kent et al 387

601■I N D E X

TestCase class

methods 348

unittest module 347

test-driven programming 341, 344

testing 341

alternatives to unit testing 350

profiling 353–354

PyChecker and PyLint 351–353

code coverage 343

planning for change 343

requirement specification 342–343

test-driven development process 344

tools for testing 344

doctest tool 344–346

unittest module 347–349

unit testing 341

testmod function

doctest tool 345–346

-based typography

 support for 412

text editor application example

elements 270

requirements 269

textwrap module 336

Thomas, David and Hunt, Andrew

Pragmatic Programmer, The 387

threading

multiple connections 304

SocketServer module 305

threading module 501

threadsafety module property

Python DB API 286

Tidy 314

getting Tidy library 316

introduction 315–316

using command-line Tidy 317

time function

time module 441

time module 440, 501

functions required for news project 441

introduction 226–227

time function

time module 227

timeit module 227, 251

profiling 353

TinyFugue 457

Tkinter GUI toolkit 271, 573

example of using 281–282

trace module 251

trace.py program 343

tracebacks 159

cgitb module 486

translate method 60, 64–65

translation tables 64

trapping exceptions162

truth values 86

try statements 570

try/except statements 169

adding except clause 164

catching exceptions 162

compared to if/else 170

try/finally statements

closing files 261

tuple function 50, 561

tuples 31, 49, 50, 55, 56

basic tuple operations 50

conversion specifiers 55

tuple function 50

uses 51

Twisted

downloading and installing 308

writing a Twisted server 309

Twisted framework

LineReceiver class 455

twisted.internet.protocol module

Factory class 309

XET
PYX

602 ■I N D E X

twisted.internet.reactor module

listenTCP function 309

twisted.protocols.basic module

LineReceiver protocol 310

type function 561

type objects 18

TypeError class 161, 180, 182, 193

types

and classes 147–148

■U
UDPServer class

SocketServer module 303

unichr function 561

unicode function 561

Unicode strings 29

uniform function

random module 228

union method

set type 222

unit testing 341

unittest module 347–349

TestCase class 347

test-first, code-later programming 345

Unix

setting environment variables 209

UnixDatagramServer class

SocketServer module 303

UnixStreamServer class

SocketServer module 303

unquote function

urllib module 301

unquote_plus function

urllib module 301

update function

pygame.display module 529, 532

update method 77

Group class 532

upper method 91

urandom function

os module 217, 228

urandom variable

os module 217

urlcleanup function

urllib module 301

urlencode function

urllib module 301

urllib module 297

functions 301

network programming 300

urlcleanup function 301

urlopen function 300, 301, 417

urlretrieve function 301

urllib2 module

network programming 300

urlopen function

urllib module 300, 301, 417

urlparse module 302, 501

urlretrieve function

urllib module 301

user input, getting 15–16

UserDict module

inheriting from class 183

UserList module

inheriting from class 183

UserString module

inheriting from class 183

■V
ValueError class 161

values method

dictionaries 77

variables 13

vars function 562

virtual tea party 455

first implementation 457

ChatServer class 457–459

ChatSession class 459–463

603■I N D E X

further exploration 472

goals 455

preparations 456–457

problem 455

second implementation 463

basic command interpretation 463–464

login and logout rooms 465

main chat room 466

new server 466–472

rooms 464–465

tools 456

■W
Warning exception class 287

warnings

exceptions as 159

Weave tool

speeding up programs 361

Web programming

dynamic pages with CGI 321

adding the Pound Bang line 321–322

CGI security risks 323

debugging with cgitb 324

preparing the Web server 321

setting file permissions 322

simple CGI script 323–324

simple form 327–328

using cgi module 325–326

mod_python 328

CGI handler 330–331

configuring Apache 330

installing 329

installing on Unix 329

installing on Windows 329

PSP 331–332

Publisher 332–334

screen scraping 313–314

Beautiful Soup module 319–320

HTMLParser 318–319

Tidy 314–317

Web services 335

RSS 335–336

XML-RPC 337–338

Web services

RSS 335–336

scraping 335

XML-RPC 337–338

webbrowser module

open function 218

while loops 94, 569

using readline method, file object 264

while True/break idiom 99–100

win32all 571

Windows

installing Python 1–2

setting environment variables 209

wininst format

Distutils installer 378

Wise installer

installing Distutils toolkit 378

write method

file object 258

stdout class 310

writeline method

file object 260, 261

wx constructors

using keyword arguments 274

wx module

importing 272

style facets 276

wx.App class 272, 518

MainLoop method 273

wx.BoxSizer class 276

wx.Button class

adding button to frame 273

wx.Frame class

Show method 273

windows as instances of 273

604 ■I N D E X

wx.Panel class

SetSizer method 276

wxPython GUI toolkit 271, 573

adding GUI to files 517

downloading and installing 271–272

event handling 278

finished program 278–280

getting started 272

labels and positions 274–276

layout 276–277

writing programs 273

■X
XHTML

reasons for using 317

XML files

parsing 421–422

special characters 436

XML for all occasions project 421

first implementation 424

creating a simple content handler
425–427

creating HTML pages 428–429

further exploration 437

goals 422

parsing XML files 421–422

preparations 423–424

second implementation 430

dispatcher mix-in class 430–432

event handlers 433–436

factoring out header, footer, and default
handling 432

support for directories 432–433

tools 422

xml.sax module

parse function 425

xml.sax.handler module

ContentHandler class 425

XML-RPC

file sharing with 499–516

introduction 337–338

xmlrpclib module 302, 337, 501

Fault class 510

importing 501

xrange function 562

xreadlines method

file object 263

lazy line iteration 265

■Y
yield statements 192, 194, 567

■Z
Zawinski, Jamie 235

ZeroDivisionError class 159, 161, 555

catching with except clause 164

exceptions 168

muffling 163

zero-padding 58

zip function 562

parallel iteration 97

Zope 313

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

